Publications by authors named "Muzaffer Kassab"

Article Synopsis
  • * During CSR, R-loops at the immunoglobulin heavy chain undergo ribose 2'-O-methylation, a modification facilitated by the interaction between fibrillarin (FBL), activation-induced cytidine deaminase (AID), and snoRNA aSNORD1C.
  • * The study suggests that 2'-O-methylation stabilizes R-loops at the IgH locus, which is crucial for effective CSR, thus providing insights into the mechanisms linking AID function and R
View Article and Find Full Text PDF
Article Synopsis
  • Innovative methods for isolating proteins linked to DNA replication have revealed insights into how DNA replication forks stall.
  • A technique called iPOND2-DRIPPER enhances the retrieval and quantification of replication proteins, increasing their levels by up to 300 times compared to standard controls.
  • This approach also allows for the direct observation of ubiquitination events and the recruitment of DNA repair factors when replication is stalled, highlighting interactions with nuclear structures.
View Article and Find Full Text PDF

Poly(ADP-ribosyl)ation (PARylation) mediated by poly ADP-ribose polymerases (PARPs) plays a key role in DNA damage repair. Suppression of PARylation by PARP inhibitors impairs DNA damage repair and induces apoptosis of tumor cells with repair defects. Thus, PARP inhibitors have been approved by the US FDA for various types of cancer treatment.

View Article and Find Full Text PDF

Poly(ADP-ribosyl)ation (PARylation) is a reversible post-translational modification regulating various biological pathways including DNA damage repair (DDR). Rapid turnover of PARylation is critically important for an optimal DNA damage response and maintaining genomic stability. Recent studies show that PARylation is tightly regulated by a group of enzymes that can erase the ADP-ribose (ADPR) groups from target proteins.

View Article and Find Full Text PDF

ADP-ribosylation is a unique posttranslational modification catalyzed by poly(ADP-ribose) polymerases (PARPs) using NAD as ADP-ribose donor. PARPs play an indispensable role in DNA damage repair and small molecule PARP inhibitors have emerged as potent anticancer drugs. However, to date, PARP inhibitor treatment has been restricted to patients with BRCA1/2 mutation-associated breast and ovarian cancer.

View Article and Find Full Text PDF

The second corresponding author Dr. Xiaochun Yu is only affiliated with [3] Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.

View Article and Find Full Text PDF

The original version of this Article contained an error in the author affiliations. Xiaochun Yu was incorrectly associated with College of Life Sciences, Hebei University, Baoding 071000 Hebei, China.This has now been corrected in both the PDF and HTML versions of the Article.

View Article and Find Full Text PDF

Poly(ADP-ribosyl)ation (PARylation) is a posttranslational modification involved in multiple biological processes, including DNA damage repair. This modification is catalyzed by poly(ADP-ribose) polymerase (PARP) family of enzymes. PARylation is composed of both linear and branched polymers of poly(ADP-ribose) (PAR).

View Article and Find Full Text PDF

LGR5 plays a critical role in tissue development and the maintenance of adult stem cells in gastrointestinal tract. However, the oncogenic role of LGR5 in the development of gastric adenocarcinoma remains elusive. Here, we show that LGR5 promotes gastric adenocarcinoma cell proliferation and metastasis.

View Article and Find Full Text PDF

53BP1 performs essential functions in DNA double-strand break (DSB) repair and it was recently reported that Tudor interacting repair regulator (TIRR) negatively regulates 53BP1 during DSB repair. Here, we present the crystal structure of the 53BP1 tandem Tudor domain (TTD) in complex with TIRR. Our results show that three loops from TIRR interact with 53BP1 TTD and mask the methylated lysine-binding pocket in TTD.

View Article and Find Full Text PDF

DNA double-strand breaks (DSBs) are fatal DNA lesions and activate a rapid DNA damage response. However, the earliest stage of DSB sensing remains elusive. Here, we report that PARP1 and the Ku70/80 complex localize to DNA lesions considerably earlier than other DSB sensors.

View Article and Find Full Text PDF

Poly ADP-ribose polymerases (PARPs) catalyze massive protein poly ADP-ribosylation (PARylation) within seconds after the induction of DNA single- or double-strand breaks. PARylation occurs at or near the sites of DNA damage and promotes the recruitment of DNA repair factors via their poly ADP-ribose (PAR) binding domains. Several novel PAR-binding domains have been recently identified.

View Article and Find Full Text PDF

Background: Recently various studies have demonstrated the role of promoter associated non-coding RNAs (pRNA) in dsRNA induced transcriptional gene silencing and activation. However the exact mechanistic details of these processes with respect to the orientation of pRNAs are poorly defined.

Methodology/principal Findings: We have identified novel sense and antisense long control region (LCR) associated RNAs (pRNAs) in HPV18 positive cervical cancer cell lines HeLa, C-4 I and C-4 II.

View Article and Find Full Text PDF

miRNAs are generally classified as "intergenic" or "intronic" based upon their genomic location. Intergenic miRNAs are known to be transcribed as independent transcription units, while intronic miRNAs are believed to be processed from the introns of their hosting transcription units and hence share common regulatory mechanisms and expression patterns with its host gene. Recent reports in the literature suggest that some intronic miRNAs, which do not show concordance in expression with their respective host genes, might be transcribed and regulated as independent transcription units.

View Article and Find Full Text PDF

Objectives: A region in the conserved 5' long terminal repeat (LTR) promoter of the integrated HIV-1C provirus was identified for effective targeting by a short double-stranded RNA (dsRNA) to cause heterochromatization leading to a long-lasting decrease in viral transcription, replication and subsequent productive infection in human host cells.

Methods: Small interfering RNAs (siRNAs) were transfected into siHa cells containing integrated LTR-luciferase reporter constructs and screened for efficiency of inducing transcriptional gene silencing (TGS). TGS was assessed by a dual luciferase assay and real-time PCR.

View Article and Find Full Text PDF