We have previously demonstrated that TGFβ Inducible Early Gene-1 (TIEG1), also known as KLF10, plays important roles in mediating skeletal development and homeostasis in mice. TIEG1 has also been identified in clinical studies as one of a handful of genes whose altered expression levels or allelic variations are associated with decreased bone mass and osteoporosis in humans. Here, we provide evidence for the first time that TIEG1 is involved in regulating the canonical Wnt signaling pathway in bone through multiple mechanisms of action.
View Article and Find Full Text PDFEndoxifen has recently been identified as the predominant active metabolite of tamoxifen and is currently being developed as a novel hormonal therapy for the treatment of endocrine sensitive breast cancer. Based on past studies in breast cancer cells and model systems, endoxifen classically functions as an anti-estrogenic compound. Since estrogen and estrogen receptors play critical roles in mediating bone homeostasis, and endoxifen is currently being implemented as a novel breast cancer therapy, we sought to comprehensively characterize the in vivo effects of endoxifen on the mouse skeleton.
View Article and Find Full Text PDFTGFβ Inducible Early Gene-1 (TIEG1) knockout (KO) mice display a sex-specific osteopenic phenotype characterized by low bone mineral density, bone mineral content, and overall loss of bone strength in female mice. We, therefore, speculated that loss of TIEG1 expression would impair the actions of estrogen on bone in female mice. To test this hypothesis, we employed an ovariectomy (OVX) and estrogen replacement model system to comprehensively analyze the role of TIEG1 in mediating estrogen signaling in bone at the tissue, cell, and biochemical level.
View Article and Find Full Text PDFEndoxifen, a cytochrome P450 mediated tamoxifen metabolite, is being developed as a drug for the treatment of estrogen receptor (ER) positive breast cancer. Endoxifen is known to be a potent anti-estrogen and its mechanisms of action are still being elucidated. Here, we demonstrate that endoxifen-mediated recruitment of ERα to known target genes differs from that of 4-hydroxy-tamoxifen (4HT) and ICI-182,780 (ICI).
View Article and Find Full Text PDFThe role of estrogen receptor alpha (ERα) in breast cancer has been studied extensively, and its protein expression is prognostic and a primary determinant of endocrine sensitivity. However, much less is known about the role of ERβ and its relevance remains unclear due to the publication of conflicting reports. Here, we provide evidence that much of this controversy may be explained by variability in antibody sensitivity and specificity and describe the development, characterization, and potential applications of a novel monoclonal antibody targeting full-length human ERβ and its splice variant forms.
View Article and Find Full Text PDFDeletion of TIEG1/KLF10 in mice results in a gender specific osteopenic skeletal phenotype with significant defects in both cortical and trabecular bone, which are observed only in female animals. Calvarial osteoblasts isolated from TIEG1 knockout (KO) mice display reduced expression levels of multiple bone related genes, including Runx2, and exhibit significant delays in their mineralization rates relative to wildtype controls. These data suggest that TIEG1 plays an important role in regulating Runx2 expression in bone and that decreased Runx2 expression in TIEG1 KO mice is in part responsible for the observed osteopenic phenotype.
View Article and Find Full Text PDFTGF-β Inducible Early Gene-1 (TIEG1) is a Krüppel-like transcription factor (KLF10) that was originally cloned from human osteoblasts as an early response gene to TGF-β treatment. As reported previously, TIEG1(-/-) mice have decreased cortical bone thickness and vertebral bone volume and have increased spacing between the trabeculae in the femoral head relative to wildtype controls. Here, we have investigated the role of TIEG1 in osteoclasts to further determine their potential role in mediating this phenotype.
View Article and Find Full Text PDFThe BRMS1 metastasis suppressor was recently shown to negatively regulate NF-kappaB signaling and down regulate NF-kappaB-dependent uPA expression. Here we confirm that BRMS1 expression correlates with reduced NF-kappaB DNA binding activity in independently derived human melanoma C8161.9 cells stably expressing BRMS1.
View Article and Find Full Text PDF2-Methoxyestradiol (2ME(2)), a physiologic metabolite of 17beta-estradiol (estrogen), has emerged as a promising cancer therapy because of its potent growth-inhibitory and proapoptotic effects on both endothelial and tumor cells. 2ME(2) also suppresses osteoclast differentiation and induces apoptosis of mature osteoclasts, and has been shown to effectively repress bone loss in an animal model of postmenopausal osteoporosis. Given these observations, we have examined whether 2ME(2) could effectively target metastasis to bone, osteolytic tumors, and soft tissue tumors.
View Article and Find Full Text PDFPodocalyxin is an anti-adhesive transmembrane sialomucin that has been implicated in the development of more aggressive forms of breast and prostate cancer. The mechanism through which podocalyxin increases cancer aggressiveness remains poorly understood but may involve the interaction of podocalyxin with ezrin, an established mediator of metastasis. Here, we show that overexpression of podocalyxin in MCF7 breast cancer and PC3 prostate cancer cell lines increased their in vitro invasive and migratory potential and led to increased expression of matrix metalloproteases 1 and 9 (MMP1 and MMP9).
View Article and Find Full Text PDFBackground: Osteopontin (OPN), a secreted phosphoglycoprotein, has been strongly associated with tumor progression and aggressive cancers. MDA-MB-435 cells secrete very high levels of OPN. However metastasis-suppressed MDA-MB-435 cells, which were transfected with breast cancer metastasis suppressor 1 (BRMS1), expressed significantly less OPN.
View Article and Find Full Text PDFNuclear factor kappa B (NFkappaB) is a central participant in the metastasis and chemoresistance of colorectal cancer (CRC). However, it is not fully understood to what extent NFkappaB contributes to induction of the metastasis-associated matrix metalloprotease-9 (MMP-9) gene and sensitivity to the commonly used chemotherapeutic 5-fluorouracil (5-Fu) in CRC. Using the RKO human CRC cell line and two NFkappaB signaling deficient RKO mutants, we investigated NFkappaB's role in the induction of MMP-9 and 5-Fu sensitivity in RKO CRC cells.
View Article and Find Full Text PDFPatients with advanced breast cancer frequently develop metastasis to bone. Bone metastasis results in intractable pain and a high risk of fractures due to tumor-driven bone loss (osteolysis), which is caused by increased osteoclast activity. Osteolysis releases bone-bound growth factors including transforming growth factor beta (TGF-beta).
View Article and Find Full Text PDFPurpose: This study aims to determine the effect of loss of breast cancer metastasis suppressor 1 (BRMS1) protein expression on disease-free survival in breast cancer patients stratified by estrogen receptor (ER), progesterone receptor (PR), or HER2 status, and to determine whether loss of BRMS1 protein expression correlated with genomic copy number changes.
Experimental Design: A tissue microarray immunohistochemical analysis was done on tumors of 238 newly diagnosed breast cancer patients who underwent surgery at the Cleveland Clinic between January 1, 1995 and December 31, 1996, and a comparison was made with 5-year clinical follow-up data. Genomic copy number changes were determined by array-based comparative genomic hybridization in 47 breast cancer cases from this population and compared with BRMS1 staining.
Objectives: To develop an enhanced lung-colonizing variant of murine bladder cancer that will allow the mechanism of metastasis to be studied more readily.
Methods: We implanted murine bladder tumor cells (MBT-2) into the leg muscles of C3H mice. We developed variant cells from a lung metastasis nodule.
Breast cancer metastasis suppressor 1 (BRMS1) functions as a metastasis suppressor gene in breast cancer and melanoma cell lines, but the mechanism of BRMS1 suppression remains unclear. We determined that BRMS1 expression was inversely correlated with that of urokinase-type plasminogen activator (uPA), a prometastatic gene that is regulated at least in part by nuclear factor-kappaB (NF-kappaB). To further investigate the role of NF-kappaB in BRMS1-regulated gene expression, we examined NF-kappaB binding activity and found an inverse correlation between BRMS1 expression and NF-kappaB binding activity in MDA-MB-231 breast cancer and C8161.
View Article and Find Full Text PDFOur laboratory has delineated that the phosphatidylinositol 3' kinase (PI3K)/AKT/I kappa B kinase (IKK) pathway positively regulates NF kappa B and beta-catenin, both important transcriptional regulators in colorectal cancer (CRC). Therefore, we investigated the effect of inhibiting the PI3K/AKT/IKK alpha pathway in regulating the inappropriate constitutive activation of NF kappa B and beta-catenin in CRC cell lines. SW480 and RKO CRC cell lines demonstrate constitutive activation of AKT as well as both NF kappa B- and beta-catenin-dependent transcription.
View Article and Find Full Text PDFBRMS1 (breast cancer metastasis suppressor 1) was recently identified as a novel breast cancer metastasis suppressor gene. To further characterize BRMS1-mediated metastasis suppression, we applied two-dimensional proteomic and mass spectrometry (LC-tandem MS and MALDI-TOF) analysis to identify proteins differentially expressed between highly metastatic MDA-MB-435 cells and metastasis-suppressed BRMS1-transfected MDA-MB-435 cells. Quadruplicate independent 2D gels were run and analyzed under identical conditions.
View Article and Find Full Text PDF