Publications by authors named "Muyu Cong"

We demonstrate that a single polycyclic π-scaffold can undergo sequential multistep excited-state structural evolution along the bent, planar, and twisted conformers, which coexist to produce intrinsic multiple fluorescence emissions in room-temperature solution. By installing a methyl or trifluoromethyl group on the ortho-site of N,N'-diphenyl-dihydrodibenzo[a,c]phenazine (DPAC), the enhanced steric effects change the fluorescence emission of DPAC from a dominant red band to well-resolved triple bands. The ultra-broadband triple emissions of ortho-substituted DPACs range from ≈350 to ≈850 nm, which is unprecedented for small fluorophores with molecular weight of <500.

View Article and Find Full Text PDF

For inorganic semiconductor nanostructure, excitons in the triplet states are known as the "dark exciton" with poor emitting properties, because of the spin-forbidden transition. Herein, we report a design principle to boost triplet excitons photoluminescence (PL) in all-inorganic lead-free double-perovskite nanocrystals (NCs). Our experimental data reveal that singlet self-trapped excitons (STEs) experience fast intersystem crossing (80 ps) to triplet states.

View Article and Find Full Text PDF

Intrinsic broadband photoluminescence (PL) of self-trapped excitons (STEs) are systematically studied in lead-free double perovskite nanocrystals (NCs). It is clarified that bandgap (direct/indirect) has important influence on the PL properties of STEs: indirect bandgap NCs exhibit strong exciton-phonon coupling which results in non-radiative STEs, while direct bandgap NCs exhibit moderate exciton-phonon coupling, inducing bright STE PL. Furthermore, by alloying K and Li ions in CsAgInCl NCs, the NCs exhibit broadband white-light emission.

View Article and Find Full Text PDF

Carrier multiplication (CM) is an effective mechanism that makes it possible to use hot carriers (HCs) to bypass the Shockley-Queisser limit for solar-cell efficiency. In this paper, we present a detailed study of both CM and HC cooling dynamics in quantum-confined CsPbI perovskite nanocrystals (NCs), using femtosecond transient absorption spectroscopy. Our results show that barrierless CM, with an efficiency exceeding 90%, can be achieved in strongly confined NCs on a time scale of ≪200 fs.

View Article and Find Full Text PDF