Immunotherapy has become a crucial strategy in cancer treatment, but its effectiveness is often constrained. Most cancer immunotherapies focus on stimulating T-cell-mediated immunity by driving the cancer-immunity cycle, which includes tumor antigen release, antigen presentation, T cell activation, infiltration, and tumor cell killing. However, metabolism reprogramming in the tumor microenvironment (TME) supports the viability of cancer cells and inhibits the function of immune cells within this cycle, presenting clinical challenges.
View Article and Find Full Text PDFProprotein convertase subtilisin/kexin type-9 (PCSK9), a secreted protein that is synthesized and spontaneously cleaved in the endoplasmic reticulum, has become a hot lipid-lowering target chased by pharmaceutical companies in recent years. Autophagosome-tethering compounds (ATTECs) represent a new strategy to degrade targeted biomolecules. Here, we designed and synthesized PCSK9·ATTECs that are capable of lowering PCSK9 levels via autophagy in vivo, providing the first report of the degradation of a secreted protein by ATTECs.
View Article and Find Full Text PDFBioorg Med Chem Lett
March 2022
Nitric oxide (NO) is an essential cellular messenger molecule involved in various physiological and pathological processes. Thus, monitoring the dynamic presence of endogenous NO in living cells is of great significance. In this paper, we developed an activatable fluorescent nanoprobe BOD-NH-NP for endogenous NO detection.
View Article and Find Full Text PDFHydrogen Sulfide (HS) mediates biological effects in a variety of ways. Due to its strong reducing potential, HS has been recognized to have an important role in oxidative stress induced hypoxia. It has been reported that HS production and miRNA can mutually regulate each other.
View Article and Find Full Text PDF