Publications by authors named "Muxing Liu"

Unlabelled: Regulator of G-protein signaling (RGS) proteins exhibit GTPase-accelerating protein activities to govern G-protein function. In the rice blast fungus , there is a family of at least eight RGS and RGS-like proteins (MoRgs1 to MoRgs8), each exhibiting distinct or shared functions in the growth, appressorium formation, and pathogenicity. MoRgs3 recently emerged as one of the crucial regulators that senses intracellular oxidation during appressorium formation.

View Article and Find Full Text PDF

Autophagy is a central biodegradation pathway critical in eliminating intracellular cargo to maintain cellular homeostasis and improve stress resistance. At the same time, the key component of the mitogen-activated protein kinase cascade regulating cell wall integrity signaling MoMkk1 has an essential role in the autophagy of the rice blast fungus . Still, the mechanism of how MoMkk1 regulates autophagy is unclear.

View Article and Find Full Text PDF

Effector proteins secreted by plant pathogenic fungi are important artilleries against host immunity, but there is no precedent of such effectors being explored as antifungal targets. Here we demonstrate that MoErs1, a species-specific effector protein secreted by the rice blast fungus Magnaporthe oryzae, inhibits the function of rice papain-like cysteine protease OsRD21 involved in rice immunity. Disrupting MoErs1-OsRD21 interaction effectively controls rice blast.

View Article and Find Full Text PDF

Microbe-produced secondary metabolite phenazine-1-carboxylic acid (PCA) facilitates pathogen virulence and defense mechanisms against competitors. Magnaporthe oryzae, a causal agent of the devastating rice blast disease, needs to compete with other phyllosphere microbes and overcome host immunity for successful colonization and infection. However, whether M.

View Article and Find Full Text PDF

Sclerotinia stem rot (SSR) caused by the phytopathogenic fungus has led to serious losses in the yields of oilseed rape and other crops every year. Here, we designed and synthesized a series of carboxamide derivatives containing a diphenyl ether skeleton by adopting the scaffold splicing strategy. From the results of the mycelium growth inhibition experiment, inhibition rates of compounds and showed more than 80% to control at a dose of 50 μg/mL, which is close to that of the positive control (flubeneteram, 95%).

View Article and Find Full Text PDF

Autophagy and Cell wall integrity (CWI) signaling are critical stress-responsive processes during fungal infection of host plants. In the rice blast fungus Magnaporthe oryzae, autophagy-related (ATG) proteins phosphorylate CWI kinases to regulate virulence; however, how autophagy interplays with CWI signaling to coordinate such regulation remains unknown. Here, we have identified the phosphorylation of ATG protein MoAtg4 as an important process in the coordination between autophagy and CWI in M.

View Article and Find Full Text PDF

The interplay between plant and pathogen is a dynamic process, with the host's innate defense mechanisms serving a crucial role in preventing infection. In response to many plant pathogen infections, host cells generate the key regulatory molecule, reactive oxygen species (ROS), to limit the spread of the invading organism. In this study, we reveal the effects of fungal peroxisome dynamics on host ROS homeostasis, during the rice blast fungus infection.

View Article and Find Full Text PDF

The emergence of fungicide resistance severely threatens crop production by limiting the availability and application of established fungicides. Therefore, it is urgent to identify new fungicidal targets for controlling plant diseases. Here, we characterized the function of a conserved homoserine O-acetyltransferase (HOA) from the rice blast fungus Magnaporthe oryzae that could serve as the candidate antifungal target.

View Article and Find Full Text PDF

The mitotic exit network (MEN) pathway is a vital kinase cascade regulating the timely and correct progress of cell division. In the rice blast fungus Magnaporthe oryzae, the MEN pathway, consisting of conserved protein kinases MoSep1 and MoMob1-MoDbf2, is important in the development and pathogenicity of the fungus. We found that deletion of MoSEP1 affects the phosphorylation of MoMob1, but not MoDbf2, in contrast to what was found in the buddy yeast Saccharomyces cerevisiae, and verified this finding by in vitro phosphorylation assay and mass spectrometry (MS) analysis.

View Article and Find Full Text PDF

Fungal cell wall decomposition enzymes exhibit great potential for the development of efficient antifungal agents. However, their practical application is restricted due to incomplete understanding of the action mode. In our previous study, we identified that a novel outer membrane (OM) β-1,6-glucanase GluM is deployed by predatory myxobacteria to feed on fungi.

View Article and Find Full Text PDF

The rice blast fungus Magnaporthe oryzae forms specialized infectious structures called appressoria that breach host cells to initiate infection. Previous studies demonstrated that the regulator of G-protein signaling (RGS)-like protein MoRgs7 undergoes endocytosis upon fungal sensing of hydrophobic environmental cues to activate cAMP signaling required for appressorium formation. However, the mechanism by which MoRgs7 internalizes and its fate remains undetermined.

View Article and Find Full Text PDF

As social micropredators, myxobacteria are studied for their abilities to prey on bacteria and fungi. However, their predation of oomycetes has received little attention. Here, we show that Archangium sp.

View Article and Find Full Text PDF

Magnaporthe oryzae causes rice blasts posing serious threats to food security worldwide. During infection, M. oryzae utilizes several transmembrane receptor proteins that sense cell surface cues to induce highly specialized infectious structures called appressoria.

View Article and Find Full Text PDF

The plasma membrane (PM) functions as a physical border between the extracellular and cytoplasmic environments that contribute to the interaction between host plants and pathogenic fungi. As a specific sterol constituent in the cell membrane, ergosterol plays a significant role in fungal development. However, the role of ergosterol in the infection of the rice blast fungus Magnaporthe oryzae remains unclear.

View Article and Find Full Text PDF

Arms race co-evolution of plant-pathogen interactions evolved sophisticated recognition mechanisms between host immune receptors and pathogen effectors. Different allelic haplotypes of an immune receptor in the host mount distinct recognition against sequence or non-sequence related effectors in pathogens. We report the molecular characterization of the Piks allele of the rice immune receptor Pik against rice blast pathogen, which requires two head-to-head arrayed nucleotide-binding sites and leucine-rich repeat proteins.

View Article and Find Full Text PDF

Apoplastic ascorbate oxidases (AOs) play a critical role in reactive oxygen species (ROS)-mediated innate host immunity by regulating the apoplast redox state. To date, little is known about how apoplastic effectors of the rice blast fungus Magnaporthe oryzae modulate the apoplast redox state of rice to subvert plant immunity. In this study, we demonstrated that M.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) homeostasis is essential for plants to manage responses under environmental stress. Plant immune activation requires the ER, but how ER homeostasis is associated with plant immune activation is largely unexplored. Here we find that transcription of an HVA22 family gene, OsHLP1 (HVA22-like protein 1), is induced by Magnaporthe oryzae infection.

View Article and Find Full Text PDF

Magnaporthe oryzae secretes several effectors that modulate and hijack rice processes to colonize host cells, but the underlying mechanisms remain unclear. We report on a novel cytoplasmic effector MoIug4 that targets the rice ethylene pathway as a transcription repressor to subvert host immunity. We found that MoIug4 binds to the promoter of the host OsEIN2 gene that encodes a central signal transducer in the ethylene-signaling pathway.

View Article and Find Full Text PDF

The initial stage of rice blast fungus, Magnaporthe oryzae, infection, before 36 h postinoculation, is a critical timespan for deploying pathogen effectors to overcome the host's defences and ultimately cause the disease. However, how this process is regulated at the transcription level remains largely unknown. This study functionally characterized two M.

View Article and Find Full Text PDF

During plant-pathogenic fungi and host plants interactions, numerous pathogen-derived proteins are secreted resulting in the activation of the unfolded protein response (UPR) pathway. For efficient trafficking of secretory proteins, including those important in disease progression, the cytoplasmic coat protein complex II (COPII) exhibits a multifunctional role whose elucidation remains limited. Here, we discovered that the COPII cargo receptor MoErv29 functions as a target of MoHac1, a previously identified transcription factor of the UPR pathway.

View Article and Find Full Text PDF

As members of the pathogenesis-related protein (PR)-2 family, β-1,3-glucanases play pivotal roles in plant defense. Previous study showed that the rice genome contains 16 genes encoding putative β-1,3-glucanases, and the β-1,3-glucanases in subfamily A were deduced to be involved in plant defense. However, there was limited direct evidence.

View Article and Find Full Text PDF

GTP-binding protein (G-protein) and regulator of G-protein signaling (RGS) mediated signal transduction are critical in the growth and virulence of the rice blast pathogen Magnaporthe oryzae. We have previously reported that there are eight RGS and RGS-like proteins named MoRgs1 to MoRgs8 playing distinct and shared regulatory functions in M. oryzae and that MoRgs1 has a more prominent role compared to others in the fungus.

View Article and Find Full Text PDF

Enzymes that degrade fungal cell walls and the resulting oligosaccharides are promising weapons to combat plant fungal disease. In this study, we identified a novel endo-chitosanase, CoA, from sp. A7-Y.

View Article and Find Full Text PDF

Plant pathogens exploit the extracellular matrix (ECM) to inhibit host immunity during their interactions with the host. The formation of ECM involves a series of continuous steps of vesicular transport events. To understand how such vesicle trafficking impacts ECM and virulence in the rice blast fungus Magnaporthe oryzae, we characterised MoSwa2, a previously identified actin-regulating kinase MoArk1 interacting protein, as an orthologue of the auxilin-like clathrin uncoating factor Swa2 of the budding yeast Saccharomyces cerevisiae.

View Article and Find Full Text PDF

The fungal cell wall plays an essential role in maintaining cell morphology, transmitting external signals, controlling cell growth, and even virulence. Relaxation and irreversible stretching of the cell wall are the prerequisites of cell division and development, but they also inevitably cause cell wall stress. Both Mitotic Exit Network (MEN) and Cell Wall Integrity (CWI) are signaling pathways that govern cell division and cell stress response, respectively, how these pathways cross talk to govern and coordinate cellular growth, development, and pathogenicity remains not fully understood.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhv7h03g91fqptkhm8ce1glp513mf0q0j): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once