Publications by authors named "Mutsumi Hosako"

Human basic fetoprotein (BFP), found in fetal serum and tissue extracts as well as in extracts of various cancer tissues, has long been known as a marker protein for cancers; however, the primary sequence has not yet been reported. This paper describes the identification of BFP using the N- and C-terminal amino acid sequence tags (Ac-AALTRDPQFQ and QQREARVQ, respectively) clarified by mass spectrometry-based methods, and a terminal tag database (ProteinCarta). In this study, BFP was identified as glucose-6-phosphate isomerase (G6PI_HUMAN).

View Article and Find Full Text PDF

To investigate the proteomic background of malignancies of the pleura, we examined and compared the proteomic profile of malignant pleural mesothelioma (MPM)(10 cases), lung adenocarcinoma (11 cases), squamous cell carcinoma of the lung (13 cases), pleomorphic carcinoma of the lung (3 cases) and synovial sarcoma (6 cases). Cellular proteins were extracted from specific populations of tumor cells recovered by laser microdissection. The extracted proteins were labeled with CyDye DIGE Fluor saturation dyes and subjected to two-dimensional difference gel electrophoresis (2D-DIGE) using a large format electrophoresis device.

View Article and Find Full Text PDF

Malignant pleural mesothelioma (MPM) is known to mimic the morphology of a number of diverse neoplastic conditions. WT-1 protein is conventionally used as a positive mesothelioma marker. Recently, a new monoclonal antibody clone WT49 has recently become commercially available.

View Article and Find Full Text PDF

Taurine is abundant in polymorphonuclear leukocytes (PMNs) where it reacts with PMN-derived hypochlorous acid to form taurine chloramine (Tau-NHCl), a substance that does not readily cross the cell membrane. When PMNs were stimulated in PBS lacking taurine, extracellular oxidant concentration was low, but the concentration increased 3-4 fold when 15 mM taurine was added, indicating that taurine lowers oxidant levels inside the cell. When Tau-NHCl was added to Jurkat cells in suspension, its half life was about 75 min.

View Article and Find Full Text PDF

Leukemic cell apoptosis may be enhanced by appropriate oxidative stress. We report here the mechanism of Jurkat cell apoptosis by monochloramine (NH(2)Cl), a neutrophil-derived oxidant. NH(2)Cl induced caspase-dependent apoptosis, which was preceded by cytochrome c and Smac/Diablo release from mitochondria.

View Article and Find Full Text PDF

We have previously reported that monochloramine (NH(2)Cl), a neutrophil-derived oxidant, inhibited tumor necrosis factor alpha (TNFalpha)-induced expression of cell adhesion molecules and nuclear factor-kappaB (NF-kappaB) activation (Free Radical Research 36 (2002) 845-852). Here, we studied the mechanism how NH(2)Cl inhibited TNFalpha-induced NF-kappaB activation, and compared the effects with taurine chloramine (Tau-NHCl). Pretreatment of Jurkat cells with NH(2)Cl at 70 microM resulted in suppression of TNFalpha-induced IkappaB phosphorylation and degradation, and inhibited NF-kappaB activation.

View Article and Find Full Text PDF

Natural-killer (NK) cell-derived malignant tumors, such as angiocentric lymphoma, is often resistant to various chemotherapeutic agents and follows an aggressive clinical course. We report the effects of physiological oxidants (hydrogen peroxide, H2O2; sodium hypochlorite, NaOCl and monochloramine, NH2Cl) on the cell growth and cell death in a multidrug-resistant NK tumor cell line, NK-YS. Among the oxidants tested, NH2Cl was most cytotoxic, in which more than 90% of the cells died at 150 nmol/1 x 10(6) cells.

View Article and Find Full Text PDF

Impairment of cell cycle control has serious effects on inflammation, tissue repair, and carcinogenesis. We report here the G1 cell cycle arrest by monochloramine (NH2Cl), a physiological oxidant derived from activated neutrophils, and its mechanism. When Jurkat cells were treated with NH2Cl (70 microM, 10 min) and incubated for 24 h, the S phase population decreased significantly with a slight increase in the hypodiploid cell population.

View Article and Find Full Text PDF

The ferric nitrilotriacetate-induced carcinogenesis model is unique in that reactive oxygen species-free radicals are involved in the carcinogenic process. But the effects of iron-withdrawal in the progression of renal cell carcinoma are not well understood. We performed repeated phlebotomies on animals that had been administered ferric nitrilotriacetate in the initiation stage of renal cell carcinoma (phlebotomy group), and compared the development of renal tumors with those not receiving repeated phlebotomies (non-phlebotomy group).

View Article and Find Full Text PDF