Publications by authors named "Mutong Liu"

Background: The heterogeneity of COVID-19 spread dynamics is determined by complex spatiotemporal transmission patterns at a fine scale, especially in densely populated regions. In this study, we aim to discover such fine-scale transmission patterns via deep learning.

Methods: We introduce the notion of TransCode to characterize fine-scale spatiotemporal transmission patterns of COVID-19 caused by metapopulation mobility and contact behaviors.

View Article and Find Full Text PDF

Malaria control can significantly benefit from a holistic and precise way of quantitatively measuring the transmission intensity, which needs to incorporate spatiotemporally varying risk factors. In this study, we conduct a systematic investigation to characterize malaria transmission intensity by taking a spatiotemporal network perspective, where nodes capture the local transmission intensities resulting from dominant vector species, the population density, and land cover, and edges describe the cross-region human mobility patterns. The inferred network enables us to accurately assess the transmission intensity over time and space from available empirical observations.

View Article and Find Full Text PDF

Background: The new waves of COVID-19 outbreaks caused by the SARS-CoV-2 Omicron variant are developing rapidly and getting out of control around the world, especially in highly populated regions. The healthcare capacity (especially the testing resources, vaccination coverage, and hospital capacity) is becoming extremely insufficient as the demand will far exceed the supply. To address this time-critical issue, we need to answer a key question: How can we effectively infer the daily transmission risks in different districts using machine learning methods and thus lay out the corresponding resource prioritization strategies, so as to alleviate the impact of the Omicron outbreaks?

Methods: We propose a computational method for future risk mapping and optimal resource allocation based on the quantitative characterization of spatiotemporal transmission patterns of the Omicron variant.

View Article and Find Full Text PDF