Publications by authors named "Mutlu Gokkavas"

We introduce and numerically validate the concept of few-layer bifunctional metasurfaces comprising two arrays of quasiplanar subwavelength resonators and a middle grid (array of rectangular holes) that offer both symmetric and asymmetric transmissions connected, respectively, with symmetric and asymmetric polarization-plane rotation functionalities. The proposed structures are thinner than and free of diffractions. Usually, the structure's symmetry or asymmetry, i.

View Article and Find Full Text PDF

The main objective of our study is to develop a new approach to the annealed proton exchange (APE) method for the fabrication of the multifunctional integrated optical chip (MIOC) used in fiber-optic gyro systems and to eliminate the loss of time and material, especially in mass production applications. In this work, self-polarized waveguides, which are the basic components of a MIOC device, were produced by the APE method and studied. With the developed method, controlled annealing trials have been carried out from a certain region on the substrate used in waveguide production, and the annealing time specific to the annealing process was determined.

View Article and Find Full Text PDF

Electrical neural stimulation with micro electrodes is a promising technique for restoring lost functions in the central nervous system as a result of injury or disease. One of the problems related to current neural stimulators is the tissue response due to the connecting wires and the presence of a rigid electrode inside soft neural tissue. We have developed a novel, optically activated, microscale photovoltaic neurostimulator based on a custom layered compound semiconductor heterostructure that is both wireless and has a comparatively small volume (<0.

View Article and Find Full Text PDF

Fabrication and experimental characterization of a broadband quarter-wave plate, which is based on two-dimensional and binary silicon high-contrast gratings, are reported. The quarter-wave plate feature is achieved by the utilization of a regime, in which the proposed grating structure exhibits nearly total and approximately equal transmission of transverse electric and transverse magnetic waves with a phase difference of approximately π/2. The numerical and experimental results suggest a percent bandwidth of 42% and 33%, respectively, if the operation regime is defined as the range for which the conversion efficiency is higher than 0.

View Article and Find Full Text PDF

We experimentally demonstrate, for the first time, an optically implemented blueshift tunable metamaterial in the terahertz (THz) regime. The design implies two potential resonance states, and the photoconductive semiconductor (silicon) settled in the critical region plays the role of intermediary for switching the resonator from mode 1 to mode 2. The observed tuning range of the fabricated device is as high as 26% (from 0.

View Article and Find Full Text PDF