Publications by authors named "Muthusankar Eswaran"

The search for new electrode materials for bipolar-supercapacitor performance is the intention of numerous research in the area of functional framework materials. Among various electrode materials, covalent triazine-based frameworks (CTFs) are in the spotlight drawing much attention as potential electrode material for energy storage owing to their tunable surface area, pore size distribution, and heteroatom content. Herein, we present the synthesis of nitrogen-functionalized CTFs marked as CTF-Py-600 and CTF-Py-700 with high nitrogen content (18 % and 14 %, respectively) for supercapacitor application by applying the 2,6-dicyanopyridine monomer via the polymerization reaction under ionothermal condition.

View Article and Find Full Text PDF

The facile fabrication is reported of highly electrochemically active TiCTx MXene/MWCNT (3D/1D)-modified screen-printed carbon electrode (SPE) for the efficient simultaneous electrochemical detection of paracetamol, theophylline, and caffeine in human blood samples. 3D/1D TiCTx MXene/MWCNT nanocomposite was synthesized using microwave irradiation and ultrasonication processes. Then, the TiCTx/MWCNT-modified SPE electrode was fabricated and thoroughly characterized towards its physicochemical and electrochemical properties using XPS, TEM, FESEM, XRD, electrochemical impedance spectroscopy, cyclic voltammetry, and differential pulse voltammetry techniques.

View Article and Find Full Text PDF

Exceptional electrical conductivity and abundance of surface terminations like-F- and OH- leading to hydrophilicity make the family of 2D transition metal carbides/nitrides and carbonitrides (MXene) excellent candidates for energy storage and conversion applications. MXenes, however, undergo restacking of nanosheets via van der Waals interaction, hindering the active sites, leading to slow electronic and ionic kinetics, and ultimately affecting their electrochemical performance. Herein, we report binder-free cetyltrimethylammonium bromide-reduced graphene oxide (CTAB-rGO)-modified MXene hybrid films on nickel foam as a promising noble metal-free multifunctional electrode synthesized via layer-by-layer assembly and dip coating techniques, which effectively reduce restacking while improving the kinetics.

View Article and Find Full Text PDF

Studies on dispersing nanoparticles in base fluid to elevate its essential and critical properties have evolved significantly in the recent decade. Alongside the conventional dispersion techniques used for nanofluid synthesis, microwave energy at 2.4 GHz frequency is irradiated onto the nanofluids is experimented with in this study.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on a new biosensor that utilizes advanced electroactive catalysts, specifically functionalized vanadium carbide (VC) combined with ruthenium (Ru) and polyaniline nanoparticles (PANI), to improve the detection of acetaminophen in human blood using modified screen-printed electrodes (SPE).
  • - Characterization techniques such as SEM, TEM, XRD, and XPS confirm the materials' properties, while cyclic voltammetry and differential pulse voltammetry demonstrate significant electrocatalytic activity and a low detection limit of 0.024 μM within a linear range of 0.1-382.72 μM.
  • - The biosensor shows impressive reproducibility (2.45%
View Article and Find Full Text PDF

The design and development of eco-friendly fabrication of cost-effective electrochemical nonenzymatic biosensors with enhanced sensitivity and selectivity are one of the emerging area in nanomaterial and analytical chemistry. In this aspect, we developed a facile fabrication of tertiary nanocomposite material based on cobalt and polymelamine/nitrogen-doped graphitic porous carbon nanohybrid composite (Co-PM-NDGPC/SPE) for the application as a nonenzymatic electrochemical sensor to quantify glucose in human blood samples. Co-PM-NDGPC/SPE nanocomposite electrode fabrication was achieved using a single-step electrodeposition method under cyclic voltammetry (CV) technique under 1 M NHCl solution at 20 constitutive CV cycles (sweep rate 20 mV/s).

View Article and Find Full Text PDF

Field effect transistor (FET)-based nanoelectronic biosensor devices provide a viable route for specific and sensitive detection of cancer biomarkers, which can be used for early stage cancer detection, monitoring the progress of the disease, and evaluating the effectiveness of therapies. On the road to implementation of FET-based devices in cancer diagnostics, several key issues need to be addressed: sensitivity, selectivity, operational conditions, anti-interference, reusability, reproducibility, disposability, large-scale production, and economic viability. To address these well-known issues, significant research efforts have been made recently.

View Article and Find Full Text PDF

Heavy metal ions (HMIs) pollution is always a serious issue worldwide. Therefore, monitoring HMIs in environmental water is an important and challenging step to ensure environmental health and human safety. In this study, we spotlight an effortless, single-step in-situ electrochemical polymerization deposition technique to fabricate a novel, low-cost, efficient, nano-engineered poly(melamine)/graphitic-carbon nitride nanonetwork (PM/g-CN) modified screen-printed carbon electrode (SPE) for sensitive, selective, and simultaneous electrochemical monitoring of toxic HMIs in environmental waters.

View Article and Find Full Text PDF