Antibiotic resistance poses a global crisis fuelled by widespread antibiotic use, particularly against Gram-negative bacteria like Klebsiella pneumoniae, a leading cause of hospital-acquired infections with high mortality rates. Urgent identification of effective drug targets is imperative, with a focus on metabolic pathways to inhibit bacterial growth. Targeting the crucial metabolic pathways of K.
View Article and Find Full Text PDFBackground: Identifying therapeutic inhibitors of crucial enzymes involved in the peptidoglycan biosynthesis pathway is pivotal for developing new treatments against multidrug-resistant Enterococcus faecalis V583. MurM, an essential enzyme in this pathway, plays a significant role in the bacterium's cell wall synthesis, making it an attractive druggable target for novel antimicrobial strategies. This study explored the potential of natural compounds as inhibitors of MurM, aiming to discover promising drug candidates that could serve as the foundation for future therapeutic development.
View Article and Find Full Text PDFKlebsiella pneumoniae has emerged as a significant multidrug-resistant pathogen, classified as a critical priority by the World Health Organization. The rising rates of antibiotic resistance have led to increased therapeutic failures, diminishing the effectiveness of existing antibiotics. Consequently, there is an urgent need for alternative treatments to effectively inhibit the growth of K.
View Article and Find Full Text PDFThe rise of antibiotic-resistant bacterial strains has become a critical health concern. According to the World Health Organization, the market introduction of new antibiotics is alarmingly sparse, underscoring the need for novel therapeutic targets. The LytR-CpsA-Psr (LCP) family of proteins, which facilitate the insertion of cell wall glycopolymers (CWGPs) like teichoic acids into peptidoglycan, has emerged as a promising target for antibiotic development.
View Article and Find Full Text PDFWarfarin is a cardiovascular drug, used to treat or inhibit the coagulation of the blood. In this paper, we have studied the interaction of lysozyme with warfarin using several experimental (fluorescence, UV-visible and circular dichroism spectroscopies) and computational (molecular docking, molecular dynamics and DFT) approaches. Experimental studies have suggested that there was a strong interaction between lysozyme and warfarin.
View Article and Find Full Text PDFThe opportunistic bacterium , which belongs to ESKAPE group of pathogenic bacteria, is leading cause of infections associated with gram-negative bacteria. causes severe diseases, such as VAP (ventilator-associated pneumonia), meningitis, and UTI (urinary tract infections) among the nosocomial infections contracted in hospitals. The high infection rate and growing resistance to the vast array of antibiotics makes it paramount to look for new therapeutic strategies against this pathogen.
View Article and Find Full Text PDFUnlabelled: The emergence of carbapenem-resistant , a highly concerning bacterial species designated as a Priority 1: Critical pathogen by the WHO, has become a formidable global threat. In this study, we utilised computational methods to explore the potent molecules capable of inhibiting the IspC enzyme, which plays a crucial role in the methylerythritol 4-phosphate (MEP) biosynthetic pathway. Employing high-throughput virtual screening of small molecules from the Enamine library, we focused on the highly conserved substrate binding site of the DXR target protein, resulting in the identification of 1000 potential compounds.
View Article and Find Full Text PDFis one of the emerging causes of hospital acquired infections and this bacterium, due to multi-drug resistant and Extensive Drug resistant has been able to develop resistance against the antimicrobial agents that are being used to eliminate it. has been the cause of death in immune compromised patients in hospitals. Hence it is the urgent need of time to find potential inhibitors for this bacterium to cease its virulence and affect its survival inside host organisms.
View Article and Find Full Text PDFDigitoxin is a cardiac glycoside used to treat heart failure and heart arrhythmia. However, its therapeutic concentration range is very narrow. High doses of digitoxin are associated with severe side effects; therefore, it is necessary to develop the delivery system which can control the plasma levels of it.
View Article and Find Full Text PDFDue to the multifarious nature of cancer, finding a single definitive cure for this dreadful disease remains an elusive challenge. The dysregulation of the apoptotic pathway or programmed cell death, governed by the Bcl-2 family of proteins plays a crucial role in cancer development and progression. Bcl-B stands out as a unique anti-apoptotic protein from the Bcl-2 family that selectively binds to Bax which inhibits its pro-apoptotic function.
View Article and Find Full Text PDFThe coexistence of ceftazidime, which is a popular third-generation of cephalosporin antibiotic, with ubiquitous paracetamol or acetaminophen, is very likely because the latter is given to the patients to reduce fever due to bacterial infection along with an antibiotic such as the former. Therefore, in this study, we investigated the detailed binding of ceftazidime with plasma protein, human serum albumin (HSA), in the absence and presence of paracetamol using spectroscopic techniques such as fluorescence, UV-visible, and circular dichroism, along with in silico methods such as molecular docking, molecular dynamics simulations, and MM/PBSA-based binding free energy analysis. The basic idea of the interaction was attained by using UV-visible spectroscopy.
View Article and Find Full Text PDFis an ESKAPE pathogen that causes endocarditis, pneumonia, blood infections, urinary tract infections, and several other illnesses. In addition, it is mainly responsible for nosocomial infection-related mortality. Gram-negative bacterium (AYE Strain) has high MDR and XDR levels.
View Article and Find Full Text PDFContext: Acinetobacter baumannii, one of the critical ESKAPE pathogens, is a highly resilient, multi-drug-resistant, Gramnegative, rod-shaped, highly pathogenic bacteria. It is responsible for almost 1-2% of all hospital-borne infections in immunocompromised patients and causes community outbreaks. Because of its resilience and MDR characteristics, looking for new strategies to check the infections related to this pathogen becomes paramount.
View Article and Find Full Text PDFThe interaction of indomethacin with human serum albumin (HSA) has been studied here considering the primary and secondary binding sites. The Stern-Volmer plots were linear in the lower concentration range of indomethacin while a downward curvature was observed in the higher concentration range, suggesting the presence of more than one binding site for indomethacin inside HSA due to which the microenvironment of the fluorophore changed slightly and some of its fraction was not accessible to the quencher. The Stern-Volmer quenching constants (K) for the primary and secondary sites were calculated from the two linear portions of the Stern-Volmer plots.
View Article and Find Full Text PDFA. baumannii is a ubiquitously found gram-negative, multi-drug resistant bacterial species from the ESKAPE family of pathogens known to be the causative agent for hospital-acquired infections such as pneumonia, meningitis, endocarditis, septicaemia and urinary tract infections. is implicated as a contributor to bloodstream infections in approximately 2% of all worldwide infections.
View Article and Find Full Text PDFThe advent of multi drug resistance and extensive-drug resistance among various pathogens has caused a rise in nosocomial infections, which in turn has led to rising hospital-acquired infection-related mortality rates. Amongst them, carbapenem-resistant is one of the most notorious bacterial species, categorized as a Priority 1: Critical pathogen by the WHO. Therefore, the discovery and development of novel antibiotics, as well as the identification of potential inhibitors, have become the need of the hour.
View Article and Find Full Text PDFSirtuins play an important role in signalling pathways associated with various metabolic regulations. They possess mono-ADP-ribosyltransferase or deacylase activity like demalonylase, deacetylase, depalmitoylase, demyristoylase and desuccinylase activity. Sirtuins are histone deacetylases which depends upon nicotinamide adenine dinucleotide (NAD) that deacetylate lysine residues.
View Article and Find Full Text PDFIn the title compound, CHNO, the cyano group adopts an axial orientation and the ester group an equatorial orientation. The dihedral angle between the pendant phenyl group and the benzene ring of the fused-ring system is 25.97 (8)°.
View Article and Find Full Text PDFAcinetobacter baumannii belongs to the ESKAPE family of pathogens and is a multi-drug resistant, gram-negative bacteria which follows the anaerobic form of respiration. A. baumannii is known to be the causative agent of hospital-related infections such as pneumonia, meningitis, endocarditis, septicaemia and a plethora of infections such as urinary tract infections found primarily in immunocompromised patients.
View Article and Find Full Text PDFPapain like protease (PLpro) is a cysteine protease from the coronaviridae family of viruses. Coronaviruses possess a positive sense, single-strand RNA, leading to the translation of two viral polypeptides containing viral structural, non-structural and accessory proteins. PLpro is responsible for the cleavage of nsp1-3 from the viral polypeptide.
View Article and Find Full Text PDFSortases are extracellular transpeptidases that play an essential role in the adhesion of secreted proteins to the peptidoglycan layer of the cell wall of Gram-negative bacteria. Sortases are an important drug target protein due to their involvement in synthesizing the peptidoglycan cell wall of , and these are not found in . In this study, initially, we have performed protein sequence analysis to understand the sequential properties of Sortase C.
View Article and Find Full Text PDFA member of the ESKAPE family of pathogens, A. baumannii, is an opportunistic gram-negative multidrug-resistant bacterium. A.
View Article and Find Full Text PDF