Bacteriophages (phages), viruses that infect bacteria, are found in abundance not only in the environment but also in the human body. The use of phages for the diagnosis of melioidosis, a tropical infectious disease caused by , is emerging as a promising novel approach, but our understanding of conditions under which prophages can be induced remains limited. Here, we first demonstrated the isolation of phages from the hemocultures of melioidosis patients.
View Article and Find Full Text PDFVet World
December 2022
Background And Aim: Domestic and wild animals are important reservoirs for antibiotic-resistant bacteria. This study aimed to isolate from feces of domestic and wild animals at an agricultural land interface area of Salaphra Wildlife Sanctuary, Thailand, and study the phylogenic characteristics and antibiotic resistance in these isolates.
Materials And Methods: In this cross-sectional, descriptive study, we randomly collected ground feces from free-ranging wild animals (deer and elephants) and domestic animals (cattle and goats).
Antimicrobial-resistant carriage and the coronavirus disease 2019 (COVID-19) lockdown measures may impact the incidence all-cause mortality rate among nursing home residents. To determine the all-cause mortality rate in the presence/absence of antimicrobial-resistant carriage and the incidence all-cause mortality rate before and during COVID-19 pandemic lockdown, this prospective closed-cohort study was conducted at various types of nursing homes in Bangkok, Thailand, from June 2020 to December 2021. The elderly residents included 142 participants (aged ≥60 years) living in nursing homes ≥3 months, who did not have terminal illnesses.
View Article and Find Full Text PDFBackground: Acute flaccid paralysis (AFP) surveillance was conducted as part of the World Health Organization's strategy for completely eradicating poliomyelitis and leaving non-polio enteroviruses NPEVs as one of the main potential causes of AFP. We aimed to detect NPEV in association with AFP.
Methods: We used 459 isolates reported to be Negative Polio and some NPEVs by the World Health Organization Polio Regional Reference Laboratory (Thailand), which had been obtained during polio surveillance programmes conducted in Thailand in 2013-2014.
Trehalose is a disaccharide of two D-glucose molecules linked by a glycosidic linkage, which plays both structural and functional roles in bacteria. Trehalose can be synthesized and degraded by several pathways, and induction of trehalose biosynthesis is typically associated with exposure to abiotic stress. The ability of trehalose to protect against abiotic stress has been exploited to stabilize a range of bacterial vaccines.
View Article and Find Full Text PDFWe report the functional and structural characterization of trehalose-6-phosphate phosphatase (TPP), from the Gram-negative bacterium B. pseudomallei that causes melioidosis, a severe infectious disease endemic in Southeast Asia and Northern Australia. TPP is a key enzyme in the trehalose biosynthesis pathway, which plays an important role in bacterial stress responses.
View Article and Find Full Text PDFBloodstream infection surveillance conducted from 2008 to 2014 in all 20 hospitals in Sa Kaeo and Nakhon Phanom provinces, Thailand, allowed us to look at disease burden, antibiotic susceptibilities, and recurrent infections caused by extended-spectrum β-lactamase (ESBL)-producing and . Of 97,832 blood specimens, 3,338 were positive for and 1,086 for . The proportion of isolates producing ESBL significantly increased from 19% to 22% in 2008-2010 to approximately 30% from 2011 to 2014 (-value for trend = 0.
View Article and Find Full Text PDFBurkholderia pseudomallei is an environmental saprophyte and the causative agent of melioidosis, a severe infectious disease prevalent in tropical areas, including southeast Asia and northern Australia. In Thailand, the highest incidence of melioidosis is in the northeast region, where saline soil and water are abundant. We hypothesized that B.
View Article and Find Full Text PDFThe NRPS/PKS cluster encodes the enzymes necessary for glidobactin synthesis it is partially conserved in various members of the Burkholderia genus including B. pseudomallei. In this study we have shown that the insertional inactivation or deletion of glbC in this cluster in B.
View Article and Find Full Text PDFTrehalose is a disaccharide formed from two glucose molecules. This sugar molecule can be isolated from a range of organisms including bacteria, fungi, plants and invertebrates. Trehalose has a variety of functions including a role as an energy storage molecule, a structural component of glycolipids and plays a role in the virulence of some microorganisms.
View Article and Find Full Text PDFBackground: Burkholderia pseudomallei is the causative agent of melioidosis, a frequently occurring disease in northeastern Thailand, where soil and water high in salt content are common. Using microarray analysis, we previously showed that B. pseudomallei up-regulated a short-chain dehydrogenase/oxidoreductase (SDO) under salt stress.
View Article and Find Full Text PDFThe twin arginine translocation (Tat) system in bacteria is responsible for transporting folded proteins across the cytoplasmic membrane, and in some bacteria, Tat-exported substrates have been linked to virulence. We report here that the Tat machinery is present in Burkholderia pseudomallei, B. mallei, and B.
View Article and Find Full Text PDFBurkholderia pseudomallei is an intracellular pathogen and the causative agent of melioidosis, a life-threatening disease of humans. Within host cells, superoxide is an important mediator of pathogen killing. In this study, we have identified the B.
View Article and Find Full Text PDFBurkholderia pseudomallei is a gram-negative bacterium and the causative agent of melioidosis, one of the important lethal diseases in tropical regions. In this article, we demonstrate the crucial role of the B. pseudomallei rpoE locus in the response to heat stress.
View Article and Find Full Text PDFWe have previously shown that the alternative sigma factor sigmaE (RpoE), encoded by rpoE, is involved in stress tolerance and survival of Burkholderia pseudomallei. However, its molecular and pathogenic mechanisms remain unclear. In the present study, we applied gel-based, differential proteomics to compare the cellular proteome of an rpoE operon knockout mutant (RpoE Mut) to that of wild-type (K96243 WT) B.
View Article and Find Full Text PDFBurkholderia pseudomallei, the causative agent of melioidosis, can be isolated from soil and water. To persist, adapt and survive within and outside their human host, bacteria rely on regulatory mechanisms that allow them to respond rapidly to stressful situations. We have examined the possible role of B.
View Article and Find Full Text PDF