Defect detection in pharmaceutical blister packages is the most challenging task to get an accurate result in detecting defects that arise in tablets while manufacturing. Conventional defect detection methods include human intervention to check the quality of tablets within the blister packages, which is inefficient, time-consuming, and increases labor costs. To mitigate this issue, the YOLO family is primarily used in many industries for real-time defect detection in continuous production.
View Article and Find Full Text PDFApproximate computing is an upsurging technique to accelerate the process through less computational effort while keeping admissible accuracy of error-tolerant applications such as multimedia and deep learning. Inheritance properties of the deep learning process aid the designer to abridge the circuitry and also to increase the computation speed at the cost of the accuracy of results. High computational complexity and low-power requirement of portable devices in the dark silicon era sought suitable alternate for Complementary Metal Oxide Semiconductor (CMOS) technology.
View Article and Find Full Text PDFIn this paper, an automatic design method based on a swarm intelligence approach for CMOS analog integrated circuit (IC) design is presented. The hybrid meta-heuristics optimization technique, namely, the salp swarm algorithm (SSA), is applied to the optimal sizing of a CMOS differential amplifier and the comparator circuit. SSA is a nature-inspired optimization algorithm which mimics the navigating and hunting behavior of salp.
View Article and Find Full Text PDF