The most typical primary brain tumor, glioblastoma multiforme (GBM), has a dismal prognosis. They are removed through arduous, potentially fatal operations. The primary cause of tumor recurrence following surgery is glioblastoma stem cells (GSCs).
View Article and Find Full Text PDFThe synthesis of N'-[(4-hydroxy-3-methoxyphenyl)methylidene] 2-aminobenzohydrazide (H-AHMB) was performed by condensing O-vanillin with 2-aminobenzohydrazide and was characterized by FTIR, high resolution ESI(+) mass spectral analysis, H and C-NMR. The compound H-AHMB was crystallized in orthorhombic Pbca space group and studied for single crystal diffraction analysis. Hirshfeld surface analysis was also carried out for identifying short interatomic interactions.
View Article and Find Full Text PDFOne of the encouraging processes to protect the environment is the catalytic conversion of NO and other harmful greenhouse gases. Employing heteroatom dopants into the Graphene structure for this conversion is an attractive technique owing to its relatively low price and the very low destructive impacts. DFT was applied to explore fundamental and principal reactions of NO adsorption and dissociation over the Silicon-embedded Graphene catalyst to contribute to the search for green catalysts in the conversion of toxic gases into less harmful ones.
View Article and Find Full Text PDFA detailed computational study of the dehydrogenation reaction of trans-propylamine (trans-PA) in the gas phase has been performed using density functional method (DFT) and CBS-QB3 calculations. Different mechanistic pathways were studied for the reaction of n-propylamine. Both thermodynamic functions and activation parameters were calculated for all investigated pathways.
View Article and Find Full Text PDFBackground: The emergence of drug-resistant bacteria in clinical practice has propelled a concerted effort to find new classes of antibiotics that will circumvent current modes of resistance. We previously described a set of imidazopyridine antibacterial leads that contain a core composed of benzimidazole and a central phthalic acid linker. These compounds showed potent antibacterial properties against a wide range of Gram-positive and Gram-negative bacteria.
View Article and Find Full Text PDFSeveral popular force fields, namely, CHARMM, AMBER, OPLS-AA, and MM3, have been tested for their ability to reproduce highly accurate quantum mechanical potential energy curves for noncovalent interactions in the benzene dimer, the benzene-CH(4) complex, and the benzene-H(2)S complex. All of the force fields are semi-quantitatively correct, but none of them is consistently reliable quantitatively. Re-optimization of Lennard-Jones parameters and symmetry-adapted perturbation theory analysis for the benzene dimer suggests that better agreement cannot be expected unless more flexible functional forms (particularly for the electrostatic contributions) are employed for the empirical force fields.
View Article and Find Full Text PDFNoncovalent C-H/pi interactions are prevalent in biochemistry and are important in molecular recognition. In this work, we present potential energy curves for methane-benzene, methane-phenol, and methane-indole complexes as prototypes for interactions between C-H bonds and the aromatic components of phenylalanine, tyrosine, and tryptophan. Second-order perturbation theory (MP2) is used in conjunction with the aug-cc-pVDZ and aug-cc-pVTZ basis sets to determine the counterpoise-corrected interaction energy for selected complex configurations.
View Article and Find Full Text PDFJ Phys Chem A
September 2006
Although supramolecular chemistry and noncovalent interactions are playing an increasingly important role in modern chemical research, a detailed understanding of prototype noncovalent interactions remains lacking. In particular, pi-pi interactions, which are ubiquitous in biological systems, are not fully understood in terms of their strength, geometrical dependence, substituent effects, or fundamental physical nature. However, state-of-the-art quantum chemical methods are beginning to provide answers to these questions.
View Article and Find Full Text PDFSandwich and T-shaped configurations of substituted benzene dimers were studied by second-order perturbation theory to determine how substituents tune pi-pi interactions. Remarkably, multiple substituents have an additive effect on the binding energy of sandwich dimers, except in some cases when substituents are aligned on top of each other. The energetics of substituted T-shaped configurations are more complex, but nevertheless a simple model that accounts for electrostatic and dispersion interactions (and direct contacts between substituents on one ring and hydrogen atoms on the other), provides a good match to the quantum mechanical results.
View Article and Find Full Text PDFSandwich and T-shaped configurations of benzene dimer, benzene-phenol, benzene-toluene, benzene-fluorobenzene, and benzene-benzonitrile are studied by coupled-cluster theory to elucidate how substituents tune pi-pi interactions. All substituted sandwich dimers bind more strongly than benzene dimer, whereas the T-shaped configurations bind more or less favorably depending on the substituent. Symmetry-adapted perturbation theory (SAPT) indicates that electrostatic, dispersion, induction, and exchange-repulsion contributions are all significant to the overall binding energies, and all but induction are important in determining relative energies.
View Article and Find Full Text PDFState-of-the-art electronic structure methods have been applied to the simplest prototype of aromatic pi-pi interactions, the benzene dimer. By comparison to results with a large aug-cc-pVTZ basis set, we demonstrate that more modest basis sets such as aug-cc-pVDZ are sufficient for geometry optimizations of intermolecular parameters at the second-order Møller-Plesset perturbation theory (MP2) level. However, basis sets even larger than aug-cc-pVTZ are important for accurate binding energies.
View Article and Find Full Text PDF