c-Jun is a major component of the dimeric transcription factor activator protein-1 (AP-1), a paradigm for transcriptional response to extracellular signaling, whose components are basic-Leucine Zipper (bZIP) transcription factors of the Jun, Fos, activating transcription factor (ATF), ATF-like (BATF) and Jun dimerization protein 2 (JDP2) gene families. Extracellular signals regulate c-Jun/AP-1 activity at multiple levels, including transcriptional and posttranscriptional regulation of c-Jun expression and transactivity, in turn, establishing the magnitude and the duration of c-Jun/AP-1 activation. Another important level of c-Jun/AP-1 regulation is due to the capability of Jun family members to bind DNA as a heterodimer with every other member of the AP-1 family, and to interact with other classes of transcription factors, thereby acquiring the potential to integrate diverse extrinsic and intrinsic signals into combinatorial regulation of gene expression.
View Article and Find Full Text PDFThe Notch signaling pathway acts in both physiological and pathological conditions, including embryonic development and tumorigenesis. In cancer progression, diverse mechanisms are involved in Notch-mediated biological responses, including angiogenesis and epithelial-mesenchymal-transition (EMT). During EMT, the activation of cellular programs facilitated by transcriptional repressors results in epithelial cells losing their differentiated features, like cell–cell adhesion and apical–basal polarity, whereas they gain motility.
View Article and Find Full Text PDFEstrogens are important modulators of a broad spectrum of physiological functions in humans. However, despite their beneficial actions, a number of lines of evidence correlate the sustained exposure to exogenous estrogen with increased risk of the onset of various cancers. Mainly these steroid hormones induce their effects by binding and activating estrogen receptors (ERα and ERβ).
View Article and Find Full Text PDFSystemic sclerosis (SSc) is an autoimmune disease characterized by extensive visceral organ and skin fibrosis. SSc patients have increased production of autoreactive antibodies and Wnt signaling activity. We found that expression of the gene encoding Wnt inhibitor factor 1 (WIF-1) was decreased in fibroblasts from SSc patient biopsies.
View Article and Find Full Text PDFThe G protein-coupled receptor GPR30/GPER has been shown to mediate rapid effects of 17β-estradiol (E2) in diverse types of cancer cells. Here, we provide evidence for a novel crosstalk between GPER and the Notch signaling pathway in breast cancer cells and cancer-associated fibroblasts (CAFs). We show that E2 and the GPER selective ligand G-1 induce both the γ-secretase-dependent activation of Notch-1 and the expression of the Notch target gene Hes-1.
View Article and Find Full Text PDFCerebellar granule cell (CGC) apoptosis by trophic/potassium (TK) deprivation is a model of election to study the interplay of pro-apoptotic and pro-survival signaling pathways in neuronal cell death. In this model, the c-Jun N-terminal kinase (JNK) induces pro-apoptotic genes through the c-Jun/activator protein 1 (AP-1) transcription factor. On the other side, a survival pathway initiated by lithium leads to repression of pro-apoptotic c-Jun/AP-1 target genes without interfering with JNK activity.
View Article and Find Full Text PDFIn the central nervous system (CNS), the c-Jun transcription factor has been mainly studied in neuronal cells and coupled to apoptotic and regenerative pathways following brain injury. Besides, several studies have shown a transcriptional role of c-Jun in activated cortical and spinal astrocytes. In contrast, little is known about c-Jun expression and transactivation in Bergmann glial (BG) cells, the radial cerebellar astrocytes playing crucial roles in cerebellar development and physiology.
View Article and Find Full Text PDFThe c-Jun N-terminal kinase (JNK) has been shown to mediate tamoxifen-induced apoptosis in breast cancer cells. However, the downstream mediators of the JNK pathway linking tamoxifen to effectors of apoptosis have yet to be identified. In this study, we analysed whether c-Jun, the major nuclear target of JNK, has a role in tamoxifen-induced apoptosis of SkBr3 breast cancer cells.
View Article and Find Full Text PDFIn androgen sensitive LNCaP prostate cancer cells, the proliferation induced by the epidermal growth factor (EGF) involves a cross-talk between the EGF receptor (EGFR) and the androgen receptor (AR). In lung cancer the role of the EGF-EGFR transduction pathway has been documented, whereas androgen activity has received less attention. Here we demonstrate that in LNCaP and A549 non-small cell lung cancer (NSCLC), AR and EGFR are required for either 5alpha-dihydrotestosterone (DHT) or EGF-stimulated cell growth.
View Article and Find Full Text PDFActivation of c-Jun, a major component of the AP-1 transcription factor, represents a paradigm for transcriptional response to stress. Transactivation of c-Jun is regulated by Jun-N-terminal kinases (JNKs) through phosphorylation at serine 63 and 73 (S63/S73), as well as at threonine 91 and 93 (T91/T93). How these two groups of phosphoacceptor sites respond to different grades of genotoxic stress and whether DNA-damage pathways influence the extent of their JNK-dependent phosphorylations remain to be elucidated.
View Article and Find Full Text PDFEstrogens play a crucial role in the development of ovarian tumors; however, the signal transduction pathways involved in hormone action are still poorly defined. The orphan G protein-coupled receptor 30 (GPR30) mediates the nongenomic signaling of 17beta-estradiol (E2) in a variety of estrogen-sensitive cancer cells through activation of the epidermal growth factor receptor (EGFR) pathway. Whether estrogen receptor alpha (ERalpha) also contributes to GPR30/EGFR signaling is less understood.
View Article and Find Full Text PDFThe higher incidence of thyroid carcinoma (TC) in women during reproductive years compared with men and the increased risk associated with the therapeutic use of estrogens have suggested a pathogenetic role exerted by these steroids in the development of TC. In the present study, we evaluated the potential of 17beta-estradiol (E2), genistein (G), and 4-hydroxyta-moxifen (OHT) to regulate the expression of diverse estrogen target genes and the proliferation of human WRO, FRO, and ARO thyroid carcinoma cells, which were used as a model system. We have ascertained that ARO cells are devoid of estrogen receptors (ERs), whereas both WRO and FRO cells express a single variant of ERalpha that was neither transactivated, modulated, nor translocated into the nucleus upon treatment with ligands.
View Article and Find Full Text PDFThe growth of both normal and transformed epithelial cells of the female reproductive system is stimulated by estrogens, mainly through the activation of estrogen receptor alpha (ERalpha), which is a ligand-regulated transcription factor. The selective ER modulator tamoxifen (TAM) has been widely used as an ER antagonist in breast tumor; however, long-term treatment is associated with an increased risk of endometrial cancer. To provide new insights into the potential mechanisms involved in the agonistic activity exerted by TAM in the uterus, we evaluated the potential of 4-hydroxytamoxifen (OHT), the active metabolite of TAM, to transactivate wild-type ERalpha and its splice variant expressed in Ishikawa and HEC1A endometrial tumor cells, respectively.
View Article and Find Full Text PDFA growing body of evidence concerning estrogen effects cannot be explained by the classic model of hormone action, which involves the binding to estrogen receptors (ERs) alpha and ERbeta and the interaction of the steroid-receptor complex with specific DNA sequences associated with target genes. Using c-fos proto-oncogene expression as an early molecular sensor of estrogen action in ERalpha-positive MCF7 and ER-negative SKBR3 breast cancer cells, we have discovered that 17beta-estradiol (E2), and the two major phytoestrogens, genistein and quercetin, stimulate c-fos expression through ERalpha as well as through an ER-independent manner via the G protein-coupled receptor homologue GPR30. The c-fos response is repressed in GPR30-expressing SKBR3 cells transfected with an antisense oligonucleotide against GPR30 and reconstituted in GPR30-deficient MDA-MB 231 and BT-20 breast cancer cells transfected with a GPR30 expression vector.
View Article and Find Full Text PDFMAPK phosphorylation of various substrates is mediated by the presence of docking sites, including the D domain and the DEF motif. Depending on the number and sequences of these domains, substrates are phosphorylated by specific subsets of MAPKs. For example, a D domain targets JNK to c-Jun, whereas a DEF motif is required for ERK phosphorylation of c-Fos.
View Article and Find Full Text PDFMenin, a nuclear protein encoded by the tumor suppressor gene MEN1, interacts with the AP-1 transcription factor JunD and inhibits its transcriptional activity. In addition, overexpression of Menin counteracts Ras-induced tumorigenesis. We show that Menin inhibits ERK-dependent phosphorylation and activation of both JunD and the Ets-domain transcription factor Elk-1.
View Article and Find Full Text PDFPhototaxis and photophobic responses of green algae are mediated by rhodopsins with microbial-type chromophores. We report a complementary DNA sequence in the green alga Chlamydomonas reinhardtii that encodes a microbial opsin-related protein, which we term Channelopsin-1. The hydrophobic core region of the protein shows homology to the light-activated proton pump bacteriorhodopsin.
View Article and Find Full Text PDFTandem affinity purification (TAP) and mass spectrometric peptide sequencing showed that the DEAD-box RNA helicase RHII/Gu is a functional interaction partner of c-Jun in human cells. The N-terminal transcription activation region of, c-Jun interacts with a C-terminal domain of RHII/Gu. This interaction is stimulated by anisomycin treatment in a manner that is concurrent with, but independent of, c-Jun phosphorylation.
View Article and Find Full Text PDF293 kidney embryonic cells feature very low levels of the anti-apoptotic protein PED. In these cells, expression of PED to levels comparable with those occurring in normal adult cells inhibits apoptosis induced by growth factor deprivation and by exposure to H(2)O(2) or anisomycin. In PED-expressing 293 cells (293(PED)), inhibition of apoptosis upon growth factor deprivation was paralleled by decreased phosphorylation of JNK1/2.
View Article and Find Full Text PDFThyroid transcription factor 1 (TTF1) is a nuclear homeodomain protein that binds to and activates the promoters of several thyroid-specific genes, including that of the thyroglobulin gene (pTg). These genes are also positively regulated by thyroid-stimulating hormone/cyclic AMP (cAMP)/protein kinase A (PKA) signaling. We asked whether PKA directly activates TTF1.
View Article and Find Full Text PDFThe conserved structure of the transcription factors of the Pax gene family may reflect functional conservation. We have demonstrated that the human Pax8 transcription factor is organized in several functional domains and contains two regions responsible for its nuclear localization, in addition to an activating region at the carboxy terminus of the protein and an inhibitory region encoded by the exon 9 present only in a splice variant PAX8a. Regions of PAX8 determining the nuclear localization of the PAX8A/lacZ fusions contain short amino acid sequences similar to several described nuclear localization sites (NLS).
View Article and Find Full Text PDFThe proto-oncogene-encoded transcription factor c-Jun activates genes in response to a number of inducers that act through mitogen-activated protein kinase (MAPK) signal transduction pathways. The activation of c-Jun after phosphorylation by MAPK is accompanied by a reduction in c-Jun ubiquitination and consequent stabilization of the protein. These results illustrate the relevance of regulated protein degradation in the signal-dependent control of gene expression.
View Article and Find Full Text PDFThe v-Ki-Ras oncoprotein dedifferentiates thyroid cells and inhibits nuclear accumulation of the catalytic subunit of cAMP-dependent protein kinase. After activation of v-Ras or protein kinase C, the regulatory subunit of type II protein kinase A, RIIbeta, translocates from the membranes to the cytosol. RIIbeta mRNA and protein were eventually depleted.
View Article and Find Full Text PDFc-Jun and JunD are two closely related members of the Jun family of transcription factors which markedly differ in their biological functions. Whereas c-Jun behaves as a positive regulator of cell growth and may cause cell transformation when overexpressed, JunD antagonizes both of these effects. To better understand how the activities of c-Jun and JunD are controlled, we investigated how their stabilities within the cell are determined.
View Article and Find Full Text PDFSince the discovery of ubiquitin-dependent protein degradation almost two decades ago, great strides have been made towards a detailed understanding of the biochemistry of this process (reviewed in [1-3]). It was, however, only in recent years that the physiological role of the ubiquitin system in signal transduction and the regulation of several cell functions started to be appreciated and experimentally addressed. As with other principal mechanisms of signal transduction, such as phosphorylation or GTP hydrolysis, much of the information regarding the role of the ubiquitin system as a component of cell regulation and signaling cascades, was gained in studies of transformation and the control of cell growth.
View Article and Find Full Text PDF