Mosquitoes and sandflies exhibit a wide range of blood feeding patterns, targeting a wide range of vertebrate species, including birds, mammals, reptiles, and amphibians, for proteins vital for egg development. This broad host range increases the opportunity for them to acquire pathogens of numerous debilitating-and-fatal diseases from various animal reservoirs, playing a significant role in disease crossover between animals and humans, also known as zoonotic transmission. This review focuses on the intricate blood-feeding habits of these dipteran vectors, their sensory systems and the complex dance between host and pathogen during disease transmission.
View Article and Find Full Text PDFGlobalisation, climate change and international trade are the factors contributing to the spread of Aedes albopictus (Diptera: Culicidae) and Ae. aegypti into new areas. In newly invaded habitats, these non-native species can serve as arbovirus disease vectors or increase the risk of disease spill over.
View Article and Find Full Text PDFAedes-transmitted arboviral infections such as Dengue, Yellow Fever, Zika and Chikungunya are increasing public health problems. Xenorhabdus and Photorhabdus bacteria are promising sources of effective compounds with important biological activities. This study investigated the effects of cell-free supernatants of X.
View Article and Find Full Text PDFThe brown garden snail (Cornu aspersum) is a major agricultural pest, causing damage to a wide range of economically important crops. Withdrawal or restricted use of pollutant molluscicides like metaldehyde has prompted a search for more benign control products. This study investigated the response of snails to 3-octanone; a volatile organic compound (VOCs) produced by the insect pathogenic fungus Metarhizium brunneum.
View Article and Find Full Text PDFMosquitoes, sandflies, and ticks are hematophagous arthropods that pose a huge threat to public and veterinary health. They are capable of serving as vectors of disease agents that can and have caused explosive epidemics affecting millions of people and animals. Several factors like climate change, urbanization, and international travel contribute substantially to the persistence and dispersal of these vectors from their established areas to newly invaded areas.
View Article and Find Full Text PDFNeofusicoccum parvum, is a fungal pathogen and one of the etiological agents of dieback disease in grapevines. The fungus causes deterioration of vines due to vascular colonization and/or production of toxins. We report herein the inhibitory effects of Trichoderma spp.
View Article and Find Full Text PDFNatural products have been proven to be important starting points for the development of new drugs. Bacteria in the genera Photorhabdus and Xenorhabdus produce antimicrobial compounds as secondary metabolites to compete with other organisms. Our study is the first comprehensive study screening the anti-protozoal activity of supernatants containing secondary metabolites produced by 5 Photorhabdus and 22 Xenorhabdus species against human parasitic protozoa, Acanthamoeba castellanii, Entamoeba histolytica, Trichomonas vaginalis, Leishmania tropica and Trypanosoma cruzi, and the identification of novel bioactive antiprotozoal compounds using the easyPACId approach (easy Promoter Activated Compound Identification) method.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
June 2022
Insects and fungal pathogens pose constant problems to public health and agriculture, especially in resource-limited parts of the world; and the use of chemical pesticides continues to be the main methods for the control of these organisms. Photorhabdus spp. and Xenorhabdus spp.
View Article and Find Full Text PDFXenorhabdus and Photorhabdus spp. are enteric bacterial symbionts of Steinernema and Heterorhabditis nematodes, respectively. These bacteria produce an extensive set of natural products (NPs) with antibacterial, antifungal, antiprotozoal, insecticidal, or other bioactivities when vectored into insect hemocoel by nematodes.
View Article and Find Full Text PDFEntomopathogenic nematodes are used widely in biological insect control. Entomopathogenic nematodes can infect live insects as well as dead insects (i.e.
View Article and Find Full Text PDFOur study aimed to identify the novel acaricidal compound in Xenorhabdus szentirmaii and X. nematophila using the easyPACId approach (easy Promoter Activated Compound Identification). We determined the (1) effects of cell-free supernatant (CFS) obtained from mutant strains against T.
View Article and Find Full Text PDFThe entomopathogenic fungus (EPF) occupies the same ecological niche as entomopathogenic nematodes (EPN), with both competing for insects as a food source in the rhizosphere. Interactions between these biocontrol agents can be antagonistic or synergistic. To better understand these interactions, this study focussed on investigating the effect of volatile organic compounds (VOCs), 1-octen-3-ol and 3-octanone, on EPN survival and behaviour.
View Article and Find Full Text PDFThe bacterial metabolites in supernatants of Xenorhabdus species have acaricidal activity, but this mode of entry into mites has not yet been elucidated. Herein, we report on the possible mode of entry of Xenorhabdus szentirmaii and Xenorhabdus nematophila supernatants into Tetranychus urticae (Acari: Tetranychidae) adult females. We also assessed the toxicity of the supernatants against the developmental stages of the predatory mites, Phytoseiulus persimilis and Neoseiulus californicus (Acari: Phytoseiidae).
View Article and Find Full Text PDFSponges are one of the cheapest and most suitable substrates used to formulate and/or store the infective juveniles (IJs) of entomopathogenic nematodes (EPNs). Our study investigated the survival and infectivity of the IJs on five different sponges compared to that in an aqueous suspension (control). The sponges were Oasis® floral, Nanosponge, Scotchbrite, or Lysol® and natural sea sponge.
View Article and Find Full Text PDF