Publications by authors named "Mustapha Arkoun"

Introduction: Numerous studies have reported the beneficial effects of silicon (Si) in alleviating biotic or abiotic stresses in many plant species. However, the role of Si in Fabaceae facing environmental stress is poorly documented. The aim of this study is to investigate the effect of Si on physiological traits and nodulation efficiency in L.

View Article and Find Full Text PDF

In the context of climate change, associated with increasingly frequent water deficits and heat waves, there is an urgent need to maintain the performance of soybean, a leading legume crop worldwide, before its yield declines. The objective of this study was to explore which plant traits improve soybean tolerance to heat and/or water stress, with a focus on traits involved in plant architecture and nutrient uptake. For this purpose, two soybean genotypes were grown under controlled conditions in a high-throughput phenotyping platform where either optimal conditions, heat waves, water stress or both heat waves and water stresses were applied during the vegetative stage.

View Article and Find Full Text PDF

Agricultural liming improves acidic soils productivity and is considered a lever for mitigating nitrous oxide (NO) emissions from soils. However, the benefit of liming in reducing soil greenhouse gas (GHG) emissions depends on the evolution of carbon from the calcium carbonate (CaCO), and on the evolution of soil organic carbon (SOC) after CaCO application. The literature, based on limited field data, presents contrasting effects of liming on inorganic- and SOC-derived CO emissions, raising concerns that the reduction in NO emissions could be offset by increased CO emissions.

View Article and Find Full Text PDF

Strigolactones (SLs) are key regulators of shoot growth and responses to environmental stimuli. Numerous studies have indicated that nitrogen (N) limitation induces SL biosynthesis, suggesting that SLs may play a pivotal role in coordinating systemic responses to N availability, but this idea has not been clearly demonstrated. Here, we generated triple knockout mutants in the SL synthesis gene TaDWARF17 (TaD17) in bread wheat and investigated their phenotypic and transcriptional responses under N limitation, aiming to elucidate the role of SLs in the adaptation to N limitation.

View Article and Find Full Text PDF

Background: Inorganic phosphate (Pi) is the sole source of phosphorus for plants. It is a limiting factor for plant yield in most soils worldwide. Due to economic and environmental constraints, the use of Pi fertilizer is and will be more and more limited.

View Article and Find Full Text PDF

In plants the communication between organs is mainly carried out via the xylem and phloem. The concentration and the molecular species of some phytohormones, assimilates and inorganic ions that are translocated in the xylem vessel play a key role in the systemic nutritional signaling in plants. In this work the composition of the xylem sap of maize was investigated at the metabolic and ionomic level depending on the N form available in the nutrient solution.

View Article and Find Full Text PDF

In many crops species, sulfur (S) deprivation negatively affects growth, seed yield quality and plant health. Furthermore, silicon (Si) is known to alleviate many nutritional stresses but the effects of Si supply on plants subjected to S deficiency remain unclear and poorly documented. The objective of this study was to evaluate whether Si supply would alleviate the negative effects of S deprivation on root nodulation and atmospheric dinitrogen (N) fixation capacity in subjected (or not) to long-term S deficiency.

View Article and Find Full Text PDF
Article Synopsis
  • Strigolactones (SLs) are phytohormones that help regulate a plant's branching and tillering, particularly in relation to nutrient availability.
  • Researchers identified 13 MAX1 homologues in wheat, revealing different expression patterns in above-ground vs. below-ground tissues, which highlights their distinct roles.
  • A study found that SL biosynthesis is influenced by nitrogen and phosphorus availability, with nitrogen limitation affecting tillering more in basal nodes and phosphorus limitation having a greater impact on roots.
View Article and Find Full Text PDF

One of the main limiting factors of plant yield is drought, and while the physiological responses to this environmental stress have been broadly described, research addressing its impact on mineral nutrition is scarce. and were subjected to moderate or severe water deficit, and their responses to drought were assessed by functional ionomic analysis, and derived calculation of the net uptake of 20 nutrients. While the uptake of most mineral nutrients decreased, Fe, Zn, Mn, and Mo uptake were impacted earlier and at a larger scale than most physiological parameters assessed (growth, ABA concentration, gas exchanges and photosynthetic activity).

View Article and Find Full Text PDF

Silicon (Si) is known to alleviate many nutritional stresses. However, in , which is a highly S-demanding species, the Si effect on S deficiency remains undocumented. The aim of this study was to assess whether Si alleviates the negative effects of S deficiency on and modulates root sulfate uptake capacity and S accumulation.

View Article and Find Full Text PDF

Owing to the large genetic diversity of barley and its resilience under harsh environments, this crop is of great value for agroecological transition and the need for reduction of nitrogen (N) fertilizers inputs. In the present work, we investigated the diversity of a North African barley genotype collection in terms of growth under limiting N (LN) or ample N (HN) supply and in terms of physiological traits including amino acid content in young seedlings. We identified a Moroccan variety, Laanaceur, accumulating five times more lysine in its leaves than the others under both N nutritional regimes.

View Article and Find Full Text PDF

Cereal-legume mixture is a well-known successful intercrop model for an efficient use of soil nutrients [1,2]. Effects of mineral N gradient on the acquisition of major nutrients: potassium (K), calcium (Ca), magnesium (Mg) and sulfur (S) is presented. A greenhouse pot experiment was conducted with wheat (Triticum aestivum L.

View Article and Find Full Text PDF

While it is generally acknowledged that drought is one of the main abiotic factors affecting plant growth, how mineral nutrition is specifically and negatively affected by water deficit has received very little attention, other than being analyzed as a consequence of reduced growth. Therefore, plants were subjected to a gradual onset of water deficits (mild, severe, or severe extended), and leaves were analyzed at the ionomic, transcriptomic and metabolic levels. The number of Differentially Expressed Genes (DEGs) and of the most differentially accumulated metabolites increased from mild (525 DEGs, 57 metabolites) to severe (5454 DEGs, 78 metabolites) and severe extended (9346 DEGs, 95 metabolites) water deficit.

View Article and Find Full Text PDF

The early and specific diagnosis of a macronutrient deficiency is challenging when seeking to better manage fertilizer inputs in the context of sustainable agriculture. Consequently, this study explored the potential for transcriptomic and metabolomic analysis of roots to characterize the effects of six individual macronutrient deprivations (N, Mg, P, S, K, and Ca). Our results showed that before any visual phenotypic response, all macronutrient deprivations led to a large modulation of the transcriptome and metabolome involved in various metabolic pathways, and some were common to all macronutrient deprivations.

View Article and Find Full Text PDF

The simultaneous presence of different N-forms in the rhizosphere leads to beneficial effects on nitrogen (N) nutrition in plants. Although widely used as fertilizers, the occurrence of cross connection between urea and ammonium nutrition has been scarcely studied in plants. Maize fed with a mixture of urea and ammonium displayed a better N-uptake efficiency than ammonium- or urea-fed plants (Buoso et al.

View Article and Find Full Text PDF

To date urea and ammonium are two nitrogen (N) forms widely used in agriculture. Due to a low production cost, urea is the N form most applied in agriculture. However, its stability in the soil depends on the activity of microbial ureases, that operate the hydrolysis of urea into ammonium.

View Article and Find Full Text PDF

Despite the wide use of urea and ammonium as N-fertilizers, no information is available about the proper ratio useful to maximize the efficiency of their acquisition by crops. Ionomic analyses of maize seedlings fed with five different mixes of urea and ammonium indicated that after 7 days of treatment, the elemental composition of plant tissues was more influenced by ammonium in the nutrient solution than by urea. Within 24 h, similar high affinity influx rates of ammonium were measured in ammonium-treated seedlings, independently from the amount of the cation present in the nutrient solution (from 0.

View Article and Find Full Text PDF

The specific variation in the functional ionome was studied in and plants subjected to micronutrient or beneficial mineral nutrient deprivation. Effects of these deprivations were compared to those of macronutrient deprivation. In order to identify early events, plants were harvested after 22 days, i.

View Article and Find Full Text PDF

The composition of the functional ionome was studied in and with respect to the response of 20 elements under macronutrient deprivation. Analysis of relative root contents showed that some nutrients, such as Fe, Ni, Cu, Na, V, and Co, were largely sequestered in roots. After 10 days of deprivation of each one of these 6 macronutrients, plant growth was similar to control plants, and this was probably the result of remobilization from roots (Mg and Ca) or old leaves (N, P, K, S).

View Article and Find Full Text PDF

In temperate trees, optimal timing and quality of flowering directly depend on adequate winter dormancy progression, regulated by a combination of chilling and warm temperatures. Physiological, genetic and functional genomic studies have shown that hormones play a key role in bud dormancy establishment, maintenance and release. We combined physiological and transcriptional analyses, quantification of abscisic acid (ABA) and gibberellins (GAs), and modeling to further investigate how these signaling pathways are associated with dormancy progression in the flower buds of two sweet cherry cultivars.

View Article and Find Full Text PDF

Background: Bud dormancy is a crucial stage in perennial trees and allows survival over winter to ensure optimal flowering and fruit production. Recent work highlighted physiological and molecular events occurring during bud dormancy in trees. However, they usually examined bud development or bud dormancy in isolation.

View Article and Find Full Text PDF

Background And Aims: Extensins are hydroxyproline-rich glycoproteins thought to strengthen the plant cell wall, one of the first barriers against pathogens, through intra- and intermolecular cross-links. The glycan moiety of extensins is believed to confer the correct structural conformation to the glycoprotein, leading to self-assembly within the cell wall that helps limit microbial adherence and invasion. However, this role is not clearly established.

View Article and Find Full Text PDF

To limit the environmental pollution associated with intensive nitrogen (N) fertilizer usage, alternative cultural practices must be considered for crops requiring high N inputs such as rapeseed. In this context, the effects of silicon (Si) supply on the agronomic performance of rapeseed cultivated under field conditions with two N fertilizer levels (60 and 160 kg ha) were studied. Results showed that Si supplied in the form of silicic acid (12 kg ha) has no effect on the agronomic performance of plants cultivated with the lower N input.

View Article and Find Full Text PDF

Modulation of gene expression in roots of Brassica napus by silicon (Si) supply could allow plants to cope with future stresses. The origin of the beneficial effects of silicon (Si) in plants, especially when they are subject to stress, remains poorly understood. Some authors have shown that Si alleviates plant stress and consider that this is mainly due to a mechanical effect on the cell wall.

View Article and Find Full Text PDF