Publications by authors named "Mustafa Utkur"

Diffusion magnetic resonance imaging (dMRI) is pivotal for probing the microstructure of the rapidly-developing fetal brain. However, fetal motion during scans and its interaction with magnetic field inhomogeneities result in artifacts and data scattering across spatial and angular domains. The effects of those artifacts are more pronounced in high-angular resolution fetal dMRI, where signal-to-noise ratio is very low.

View Article and Find Full Text PDF

The demand for highly efficient cancer diagnostic tools increases alongside the high cancer incidence nowadays. Moreover, there is an imperative need for novel cancer treatment therapies that lack the side effects of conventional treatment options. Developments in this aspect employ magnetic nanoparticles (MNPs) for biomedical applications due to their stability, biocompatibility, and magnetic properties.

View Article and Find Full Text PDF

Purpose: Magnetic particle imaging (MPI) is emerging as a highly promising imaging modality. Magnetic nanoparticles (MNPs) are used as imaging tracers in MPI, and their relaxation behavior provides the foundation for its functional imaging capability. Since MNPs are also utilized in magnetic fluid hyperthermia (MFH) and MPI enables localized MFH, temperature mapping arises as an important application area of MPI.

View Article and Find Full Text PDF

Anisotropic macromolecules exposed to non-equilibrium (active) noise are very common in biological systems, and an accurate understanding of their anisotropic dynamics is therefore crucial. Here, we experimentally investigate the dynamics of isolated chains assembled from magnetic microparticles at a liquid-air interface and moving in an active bath consisting of motile E. coli bacteria.

View Article and Find Full Text PDF

Magnetic particle imaging (MPI) is a novel imaging modality with important potential applications, such as angiography, stem cell tracking, and cancer imaging. Recently, there have been efforts to increase the functionality of MPI via multi-color imaging methods that can distinguish the responses of different nanoparticles, or nanoparticles in different environmental conditions. The proposed techniques typically rely on extensive calibrations that capture the differences in the harmonic responses of the nanoparticles.

View Article and Find Full Text PDF

Biocompatible, colloidally stable and ultra-small FeO nanoparticles (SPIONs) coated with poly(N-isopropylacrylamide) (PNIPAM) were synthesized via surface-initiated ATRP (atom transfer radical polymerization) to prevent excessive aggregation of magnetic cores and interparticle crosslinking, and to provide control over polymer content. These SPION-PNIPAM nanoparticles (NPs) have a hydrodynamic size between 8 and 60 nm depending on the PNIPAM content, and hence are ultrasmall in size and have an LCST around 38 °C. They had a high drug-loading capacity reaching 9.

View Article and Find Full Text PDF

Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used as a robust negative contrast agent on conventional MRI. In this study, we (a) synthesized a new class of cubic SPIONs as a dual-mode contrast agent in MRI and (b) showed the in-vivo feasibility of these nanaoparticles as a simultaneous positive and negative contrast agent. Relaxation properties and contrast enhancement analysis of the synthesized SPIONs with two different shapes (cubic vs.

View Article and Find Full Text PDF