Conoscopic interferometry is a promising detection technique for ultrafast acoustics. By focusing a probe beam through a birefringent crystal before passing it through a polarizer, conoscopic interferences sculpt the spatial profile of the beam. The use of these patterns for acoustic wave detection revealed a higher detection sensitivity over existing techniques, such as reflectometry and beam distortion detection.
View Article and Find Full Text PDFAssessment of microvasculature and tissue perfusion can provide diagnostic information on local or systemic diseases. Photoacoustic (PA) imaging has strong clinical potential because of its sensitivity to hemoglobin. We used a hand-held PA probe with integrated diode lasers and examined its feasibility and validity in the detection of increasing blood volume and (sub) dermal vascularization.
View Article and Find Full Text PDFPhotoacoustic imaging (PAI) may have the ability to reveal the composition and the anatomical structure of carotid plaques, which determines its mechanical properties and vulnerability. We used PAI and plane wave ultrasound (PUS) imaging to obtain three-dimensional (3-D) images of endarterectomy samples ex vivo and compared the results with histology to investigate the potential of PAI-based identification of intraplaque hemorrhage. Seven carotid plaque samples were obtained from patients undergoing carotid endarterectomy and imaged with a fully integrated hand-held photoacoustic (PA) probe, consisting of a pulsed diode laser ( t pulse = 130 ?? ns , E pulse = 1 ?? mJ , ? = 808 ?? nm ) and a linear array transducer ( f c = 7.
View Article and Find Full Text PDF