A promising approach to treat colorectal cancer (CRC) involves combining chemotherapy, epigenetics, and gene therapy to combat drug resistance. Multifunctional nanocarriers have emerged as a valuable tool for targeted CRC therapy. By delivering multiple treatments directly to cancer cells, these nanocarriers offer the potential for improved outcomes and reduced side effects.
View Article and Find Full Text PDFThe present paper describes green immobilization of silver nanoparticles on MnFeO@SiO nanospheres using () without using any other toxic chemicals and reducing or stabilizing agents. The morphology, composition, and magnetic properties of the resulting MnFeO@SiO-Ag core-shell nanocatalyst were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The catalytic performance of the synthesized MnFeO@SiO-Ag was employed on the organic pollutants dyes such as rhodamine B (RhB) and methylene blue (MB).
View Article and Find Full Text PDFDifferent generations (G3-G4) of amine-terminated Jeffamine® T-403 core poly(amidoamine) PAMAM dendrimers (JCPDs) were used as new macromolecular heavy metal chelating agent templates in polymer assisted ultrafiltration (PAUF) for the investigation of their removal ability for some of the divalent metal ions: Cu, Co, Ni, Cd, and Zn from aqueous solutions under competitive conditions. The effects of pH and generation size of JCPDs were also investigated. Extent of binding (EOB) data can be appropriately expressed by a tetradentate coordination for JCPDs at pH 9 where the maximum removal of metal ions was observed.
View Article and Find Full Text PDFWhile reshaping their microenvironment, tumors are also capable of influencing systemic processes including myeloid cell production. Therefore, the tumor-induced myeloid cells, such as myeloid-derived suppressor cells (MDSCs), which are characterized with pro-cancer properties, became another target in order to increase the success of the therapy. This study evaluated the capacity of a novel dendrimeric drug delivery platform to eliminate tumor-induced myeloid cells.
View Article and Find Full Text PDFThis study presents the synthesis and UV-Vis characterization of Cu nanocomposites from ethylenediamine (EDA) (E), diethylenetriamine (DETA) (D), and Jeffamine® T-403 (P) cored PAMAM dendrimers (PAMAMs) with TRIS and carboxyl surface functional groups. Cu-PAMAM dendrimer encapsulated nanoparticles (Cu-DENs) were characterized by UV-Vis spectroscopy. Disappearance of the 680 nm d-d transition and 270-300 nm ligand to metal charge transfer (LMCT) peaks and the formation of monotically increasing exponential band were used as the evidence of the successful synthesis of Cu-DENs in addition to immediate color change of dendrimer-metal mixture solutions from blue to golden brown by reduction.
View Article and Find Full Text PDFTumor-targeted delivery of anticancer drugs using dendrimers has been recognized as a promising strategy to increase efficiency and reduce adverse effects of chemotherapy. Herein, we developed a dendrimer-based drug delivery system targeting Flt-1 (a receptor for vascular endothelial growth factors (VEGF)) receptor to improve therapeutic efficacy of gemcitabine in pancreatic cancer. Synthesized polyethylene glycol (PEG)-cored PAMAM dendrimers, which bear anionic carboxylic acid groups on the surface were modified with PEG chains, which were then conjugated with Flt-1 antibody.
View Article and Find Full Text PDFSulfamethoxazole (SMZ) is a sulfonamide and used widely in the treatment of bacteriostatic and urinary tract infections with trimethoprim as an antibiotic. The problem with SMZ is its poor water solubility, therefore, low bioavailability in clinical applications. In this study, we synthesized new-generation Tris(2-aminoethyl)amine (TREN)-cored amine (NH), Tris(hydroxymethyl)aminomethane (TRIS), and carboxyl (COOH) terminated different generations T2-T4 poly(amidoamine) PAMAM dendrimers.
View Article and Find Full Text PDFThis article investigates the aqueous solubility of the poorly soluble drug candesartan cilexetil (CC) in the presence of poly(amidoamine) (PAMAM) dendrimers. The effect of variables such as concentration, generation size (G2-G4), and surface groups (NH, COOH and TRIS) of PAMAMs on the aqueous solubility of CC was studied. A two-factor factorial (3 × 3) ANOVA design was used to study the effect of generation size and surface functional group of the PAMAMs.
View Article and Find Full Text PDF