Publications by authors named "Mustafa Siddiq"

Over the past decade, boldine, a naturally occurring alkaloid found in several plant species including the Chilean Boldo tree, has garnered attention for its efficacy in rodent models of human disease. Some of the properties that have been attributed to boldine include antioxidant activities, neuroprotective and analgesic actions, hepatoprotective effects, anti-inflammatory actions, cardioprotective effects and anticancer potential. Compelling data now indicates that boldine blocks connexin (Cx) hemichannels (HCs) and that many if not all of its effects in rodent models of injury and disease are due to CxHC blockade.

View Article and Find Full Text PDF
Article Synopsis
  • A study investigates how drug-induced gene expression profiles can reveal mechanisms of cardiotoxicity in FDA-approved tyrosine kinase inhibitors (TKIs) using human stem cell-derived heart cells.
  • The research employs singular value decomposition to detect drug-specific patterns in cells from various healthy individuals, highlighting affected cellular pathways like energy metabolism and contractile functions.
  • The findings suggest that integrating mRNA expression data with genomic and pathway information can create comprehensive signatures for cardiotoxicity, aiding in drug development and personalized treatment strategies.
View Article and Find Full Text PDF

There are no known drugs or drug combinations that promote substantial central nervous system axonal regeneration after injury. We used systems pharmacology approaches to model pathways underlying axonal growth and identify a four-drug combination that regulates multiple subcellular processes in the cell body and axons using the optic nerve crush model in rats. We intravitreally injected agonists HU-210 (cannabinoid receptor-1) and IL-6 (interleukin 6 receptor) to stimulate retinal ganglion cells for axonal growth.

View Article and Find Full Text PDF

Introduction: Neurons transport mRNA and translational machinery to axons for local translation. After spinal cord injury (SCI), translation is assumed to enable neurorepair. Knowledge of the identity of axonal mRNAs that participate in neurorepair after SCI is limited.

View Article and Find Full Text PDF

Spinal cord injury (SCI) results in severe atrophy of skeletal muscle in paralyzed regions, and a decrease in the force generated by muscle per unit of cross-sectional area. Oxidation of skeletal muscle ryanodine 1 receptors (RyR1) reduces contractile force due to reduced binding of calstabin 1 to RyR1 together with altered gating of RyR1. One cause of RyR1 oxidation is NADPH oxidase 4 (Nox4).

View Article and Find Full Text PDF

Apolipoprotein E epsilon 4 (ApoE4) is the second most common variant of ApoE, being present in ∼14% of the population. Clinical reports identify ApoE4 as a genetic risk factor for poor outcomes after traumatic spinal cord injury (SCI) and spinal cord diseases such as cervical myelopathy. To date, there is no intervention to promote recovery of function after SCI/spinal cord diseases that is specifically targeted at ApoE4-associated impairment.

View Article and Find Full Text PDF

Membrane channels such as those formed by connexins (Cx) and P2X receptors (P2XR) are permeable to calcium ions and other small molecules such as adenosine triphosphate (ATP) and glutamate. Release of ATP and glutamate through these channels is a key mechanism driving tissue response to traumas such as spinal cord injury (SCI). Boldine, an alkaloid isolated from the Chilean boldo tree, blocks both Cx and Panx1 hemichannels (HCs).

View Article and Find Full Text PDF

Background: Single-cell RNA sequencing (scRNA-seq) provides valuable insights into human islet cell types and their corresponding stable gene expression profiles. However, this approach requires cell dissociation that complicates its utility in vivo. On the other hand, single-nucleus RNA sequencing (snRNA-seq) has compatibility with frozen samples, elimination of dissociation-induced transcriptional stress responses, and affords enhanced information from intronic sequences that can be leveraged to identify pre-mRNA transcripts.

View Article and Find Full Text PDF

Membrane channels such as connexins (Cx), pannexins (Panx) and P2X receptors (P2X R) are permeable to calcium ions and other small molecules such as ATP and glutamate. Release of ATP and glutamate through these channels is a key mechanism driving tissue response to traumas such as spinal cord injury (SCI). Boldine, an alkaloid isolated from the Chilean boldo tree, blocks both Cx hemichannels (HC) and Panx.

View Article and Find Full Text PDF
Article Synopsis
  • Neurite outgrowth happens when a special receptor called cannabinoid-1 is triggered, causing the entire cell to respond in a coordinated way.
  • Researchers studied the different biochemical pathways involved in this response and found many processes that help the cell grow neurites.
  • They discovered that some critical processes work deeper in the cell while others are directly related to growing the parts required for neurite extension, meaning many pathways are needed for this growth to happen correctly.
View Article and Find Full Text PDF
Article Synopsis
  • Axonal regeneration in the mature central nervous system (CNS) is hindered by various extracellular factors, even in genetically modified mice that lack key myelin-associated inhibitors.
  • Researchers discovered high levels of histone H3 in human cerebrospinal fluid and at injury sites in animal models, indicating it acts as an inhibitor of nerve regeneration.
  • Histones inhibit nerve growth by targeting specific receptors and pathways, but this effect can be reversed with activated protein C, which enhances axonal regeneration in damaged nerves.
View Article and Find Full Text PDF

COVID-19 affects multiple organs. Clinical data from the Mount Sinai Health System show that substantial numbers of COVID-19 patients without prior heart disease develop cardiac dysfunction. How COVID-19 patients develop cardiac disease is not known.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a devastating form of neurotrauma. Patients who carry one or two apolipoprotein E (ApoE)4 alleles show worse functional outcomes and longer hospital stays after SCI, but the cellular and molecular underpinnings for this genetic link remain poorly understood. Thus, there is a great need to generate animal models to accurately replicate the genetic determinants of outcomes after SCI to spur development of treatments that improve physical function.

View Article and Find Full Text PDF

COVID-19 affects multiple organs. Clinical data from the Mount Sinai Health System shows that substantial numbers of COVID-19 patients without prior heart disease develop cardiac dysfunction. How COVID-19 patients develop cardiac disease is not known.

View Article and Find Full Text PDF

Rap1 is a small GTPase that has been implicated in dendritic development and plasticity. In this study, we investigated the role of Rap1 in axonal growth and its activation in response to neurotrophins and myelin-associated inhibitors. We report that Rap1 is activated by brain-derived neurotrophic factor and that this activation can be blocked by myelin-associated glycoprotein (MAG) or central nervous system myelin, which also induced increases in Rap1GAP1 levels.

View Article and Find Full Text PDF

Whole cell responses involve multiple subcellular processes (SCPs). To understand how balance between SCPs controls the dynamics of whole cell responses we studied neurite outgrowth in rat primary cortical neurons in culture. We used a combination of dynamical models and experiments to understand the conditions that permitted growth at a specified velocity and when aberrant growth could lead to the formation of dystrophic bulbs.

View Article and Find Full Text PDF

Inhibitory molecules associated with CNS myelin, such as myelin-associated glycoprotein (MAG), represent major obstacles to axonal regeneration following CNS injury. Our laboratory has shown that elevating levels of intracellular cAMP, via application of the nonhydrolyzable analog dibutyryl cAMP (dbcAMP), can block the inhibitory effects of MAG and myelin. We have also shown that elevation of cAMP results in upregulation of arginase I and increased polyamine synthesis.

View Article and Find Full Text PDF

Elevation of intracellular cyclic AMP (cAMP) levels has proven to be one of the most effective means of overcoming inhibition of axonal regeneration by myelin-associated inhibitors such as myelin-associated glycoprotein (MAG), Nogo, and oligodendrocyte myelin glycoprotein. Pharmacological manipulation of cAMP through the administration of dibutyryl cAMP or rolipram leads to enhanced axonal growth both in vivo and in vitro, and importantly, upregulation of cAMP within dorsal root ganglion neurons is responsible for the conditioning lesion effect, which indicates that cAMP plays a significant role in the endogenous mechanisms that promote axonal regeneration. The effects of cAMP are transcription-dependent and are mediated through the activation of protein kinase A (PKA) and the transcription factor cyclic AMP response element binding protein (CREB).

View Article and Find Full Text PDF

The adult CNS does not spontaneously regenerate after injury, due in large part to myelin-associated inhibitors such as myelin-associated glycoprotein (MAG), Nogo-A, and oligodendrocyte-myelin glycoprotein. All three inhibitors can interact with either the Nogo receptor complex or paired immunoglobulin-like receptor B. A conditioning lesion of the sciatic nerve allows the central processes of dorsal root ganglion (DRG) neurons to spontaneously regenerate in vivo after a dorsal column lesion.

View Article and Find Full Text PDF

After CNS injury, axonal regeneration is limited by myelin-associated inhibitors; however, this can be overcome through elevation of intracellular cyclic AMP (cAMP), as occurs with conditioning lesions of the sciatic nerve. This study reports that expression of secretory leukocyte protease inhibitor (SLPI) is strongly upregulated in response to elevation of cAMP. We also show that SLPI can overcome inhibition by CNS myelin and significantly enhance regeneration of transected retinal ganglion cell axons in rats.

View Article and Find Full Text PDF

Glutamatergic neurons contain free zinc packaged into neurotransmitter-loaded synaptic vesicles. Upon neuronal activation, the vesicular contents are released into the synaptic space, whereby the zinc modulates activity of postsynaptic neurons though interactions with receptors, transporters and exchangers. However, high extracellular concentrations of zinc trigger seizures and are neurotoxic if substantial amounts of zinc reenter the cells via ion channels and accumulate in the cytoplasm.

View Article and Find Full Text PDF

Lesioning the peripheral branch of a dorsal root ganglion (DRG) neuron before injury of the central branch of the same neuron enables spontaneous regeneration of these spinal axons. This effect is cAMP and transcription dependent. Here, we show that the cytokine interleukin-6 (IL-6) is upregulated in DRG neurons after either a conditioning lesion or treatment with dibutyryl-cAMP.

View Article and Find Full Text PDF

Here we present the first demonstration that 2-deoxy-2[18F]fluoro-D-glucose (18FDG) and micro Positron Emission Tomography (microPET) can be used successfully to monitor regional changes in brain metabolism during acute seizure induction in C57Bl/6 mice. These longitudinal studies show a significant increase in 18FDG uptake in the hippocampus (33.2%) which correlates directly with seizure severity (R2=0.

View Article and Find Full Text PDF

Background: The local pulmonary balance between the agonist and antagonist of interleukin-1 (IL-1) may influence the development of inflammatory disease and resultant structural damage in a variety of human diseases including adult respiratory distress syndrome and asthma.

Objectives: We tested the hypothesis that IL-1 cytokines are early markers for bronchopulmonary dysplasia (BPD), when measured in tracheal aspirates (TAs) obtained from premature infants being ventilated for respiratory distress syndrome during the first week of life.

Methods: Serial TAs were collected on days 1, 3, 5 and 7 from 35 preterm infants (16 BPD, 19 non-BPD) in the absence of chorioamnionitis, and were assayed for IL-1 cytokines and leukocytes.

View Article and Find Full Text PDF