Unobtrusive home sleep monitoring using wrist-worn wearable photoplethysmography (PPG) could open the way for better sleep disorder screening and health monitoring. However, PPG is rarely included in large sleep studies with gold-standard sleep annotation from polysomnography. Therefore, training data-intensive state-of-the-art deep neural networks is challenging.
View Article and Find Full Text PDFBackground: Physical exercise is an effective lifestyle intervention to improve blood pressure. Although aerobic sports can be performed anywhere, resistance exercises are traditionally performed at the gym; extending the latter to the home setting may promote an increase in the number of practitioners.
Objective: This study aims to evaluate a sensor-based system that guides resistance exercises through ambient lighting and sonification (A/S) feedback in a home setting in 34 study participants who were normotensive and prehypertensive.
Study Objectives: To validate a previously developed sleep staging algorithm using heart rate variability (HRV) and body movements in an independent broad cohort of unselected sleep disordered patients.
Methods: We applied a previously designed algorithm for automatic sleep staging using long short-term memory recurrent neural networks to model sleep architecture. The classifier uses 132 HRV features computed from electrocardiography and activity counts from accelerometry.
Automated sleep stage classification using heart rate variability (HRV) may provide an ergonomic and low-cost alternative to gold standard polysomnography, creating possibilities for unobtrusive home-based sleep monitoring. Current methods however are limited in their ability to take into account long-term sleep architectural patterns. A long short-term memory (LSTM) network is proposed as a solution to model long-term cardiac sleep architecture information and validated on a comprehensive data set (292 participants, 584 nights, 541.
View Article and Find Full Text PDFObjective: Evaluate a method for the estimation of the nocturnal systolic blood pressure (SBP) dip from 24 h blood pressure trends using a wrist-worn photoplethysmography (PPG) sensor and a deep neural network in free-living individuals, comparing the deep neural network to traditional machine learning and non-machine learning baselines.
Approach: A wrist-worn PPG sensor was worn by 106 healthy individuals for 226 d during which 5111 reference values for blood pressure (BP) were obtained with a 24 h ambulatory BP monitor and matched with the PPG sensor data. Features based on heart rate variability and pulse morphology were extracted from the PPG waveforms.
Study Objectives: To compare the accuracy of automatic sleep staging based on heart rate variability measured from photoplethysmography (PPG) combined with body movements measured with an accelerometer, with polysomnography (PSG) and actigraphy.
Methods: Using wrist-worn PPG to analyze heart rate variability and an accelerometer to measure body movements, sleep stages and sleep statistics were automatically computed from overnight recordings. Sleep-wake, 4-class (wake/N1 + N2/N3/REM) and 3-class (wake/NREM/REM) classifiers were trained on 135 simultaneously recorded PSG and PPG recordings of 101 healthy participants and validated on 80 recordings of 51 healthy middle-aged adults.
Automatic sleep stage classification with cardiorespiratory signals has attracted increasing attention. In contrast to the traditional manual scoring based on polysomnography, these signals can be measured using advanced unobtrusive techniques that are currently available, promising the application for personal and continuous home sleep monitoring. This paper describes a methodology for classifying wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) light and deep sleep on a 30 s epoch basis.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2016
Automatic sleep staging on an online basis has recently emerged as a research topic motivated by fundamental sleep research. The aim of this paper is to find optimal signal processing methods and machine learning algorithms to achieve online sleep staging on the basis of a single EEG signal. The classification performance obtained using six different EEG signals and various signal processing feature sets is compared using the kappa statistic which has very recently become popular in sleep staging research.
View Article and Find Full Text PDF