Zearalenone (ZEN) is a mycotoxin that poses significant risks to human and animal health due to its mutagenic, immunosuppressive, and carcinogenic properties. This study presents a novel analytical method for detecting ZEN using electrochemical impedance spectroscopy (EIS) combined with a molecularly imprinted polymer (MIP). ZEN, used as the template molecule, was incorporated into polypyrrole on screen-printed electrodes (SPE), and a ZEN-sensitive MIP sensor was created through template removal.
View Article and Find Full Text PDFIn this study, a quartz crystal microbalance (QCM) aptasensor for carcinoembryonic antigen (CEA), a well-known biomarker for various cancer types, was reported, utilizing two different aptamers. To achieve this, a nanofilm of 4-mercaptophenyl was electrochemically attached to gold-coated QCM crystal surfaces via the reduction of 4-mercaptobenzenediazonium salt (4 MB-DAT) using cyclic voltammetry. Subsequently, gold nanoparticles (AuNP) were affixed to this structure, and then aptamers (antiCEA1 and antiCEA2) modified with SH-functional ends bound to AuNPs completed the modification.
View Article and Find Full Text PDFIn this study, an electrochemical and aptamer-based aptasensor was developed for the sensitive detection of patulin, a mycotoxin commonly found in fruits and fruit-based products. The aptasensor used an innovative structural switching signal-off platform for detecting patulin. The aptamer immobilization on screen-printed carbon electrodes was achieved through Au electrodeposition and thiol group (-SH) route.
View Article and Find Full Text PDFTadalafil is one of the selective phosphodiesterase type 5 inhibitors (PDE5) and serves as the active compound in drugs used for the treatment of erectile dysfunction. These PDE5 inhibitors are prescribed under medical supervision. However, cases of adulteration of dietary supplements with PDE5 inhibitors or their unapproved analogs have been reported worldwide.
View Article and Find Full Text PDFPatulin is a low molecular weight mycotoxin and poses a global problem, especially threatening food safety. It is also resistant to processing temperatures and is commonly found in fruits and vegetables. Studies have shown that it has toxic effects on animals and humans and the severity of patulin toxicity depends on the amount ingested.
View Article and Find Full Text PDFCrit Rev Anal Chem
August 2024
Endocrine disruptive compounds are natural or anthropogenic environmental micropollutants that alter the function of the endocrine system ultimately damaging the metabolism. Bisphenol A (BPA) is the most common of these pollutants and it is often used in epoxy coatings and polycarbonates as a plasticizer. Therefore, monitoring BPA levels in different environments is very important and challenging.
View Article and Find Full Text PDFThe spectroscopic ellipsometry (SE), and attenuated internal reflection spectroscopic ellipsometry (TIRE) are promising methods in label-free biosensing applications. An ellipsometer running under surface plasmon resonance (SPR) conditions has unique advantages over other SPR-based methods in terms of sensitivity and real-time/label-free measurement capability. In this study, both SE and TIRE-based brevetoxin B (BTX) sensors were developed using two anti-BTX aptamers reported before.
View Article and Find Full Text PDFMechanical tests at sub-micron scales using force microscopy are often used for the characterization of materials. Here we report the mechanical, tribologic, and morphological characterization of recycled polypropylene beads using force spectroscopy and lateral-force microscopy. The compression-elastic moduli calculated using the Hertzian model for polypropylene beads was between 0.
View Article and Find Full Text PDFA sensitive and selective, aptamer and spectroscopic ellipsometry based sensor is reported here for the early diagnosis of breast cancer, which is a common type of cancer following lung cancer. It was aimed to develop a single-step and label-free assay for the sensitive and selective detection of VEGF. To this end, two different aptamers and spectroscopic ellipsometry were used.
View Article and Find Full Text PDFIn this study, it is aimed to improve the lubrication and anti-wear characteristics of nanofluids produced by the distribution of silane-modified graphene nanosheets into the base oil without any surfactant or dispersant. Nanofluids are among the hottest research topics currently studied in the literature due to their interesting thermal and rheological properties. Graphene nanosheet with unique physicochemical properties is a good alternative as a nanofluid component and a lubricant.
View Article and Find Full Text PDFSince carbon quantum dots have high photoluminescent efficiency, it has been a desired material in sensor and bioimaging applications. In recent years, the green chemistry approach has been preferred and the production of quantum dots has been reported in many studies using different precursors from natural, abundant, or waste sources. Hydrothermal, chemical oxidation, microwave supported, ultrasonic, solvothermal, pyrolysis, laser etching, solid-state, plasma, and electrochemical methods have been reported in the literature.
View Article and Find Full Text PDFIn this study, we proposed label-free saxitoxin (STX) sensor using STX specific aptamer in combination with spectroscopic ellipsometry (SE) and attenuated internal reflection (AIR) spectroscopic ellipsometry method which is operated under surface plasmon resonance (SPR) conditions. Besides the other surface plasmon resonance-based applications, AIR-SE applications have unique advantages in terms of sensitivity and it was used herein for real-time detection of STX in real samples. Another method, SE, was also used and compared with AIR-SE.
View Article and Find Full Text PDFHeavy metal ion pollution is a severe problem in environmental protection and especially in human health due to their bioaccumulation in organisms. Mercury (II) (Hg), even at low concentrations, can lead to DNA damage and give permanent harm to the central nervous system by easily passing through biological membranes. Therefore, sensitive detection and monitoring of Hg is of particular interest with significant specificity.
View Article and Find Full Text PDFCancer is one of the most common and important diseases with a high mortality rate. Breast cancer is among the three most common types of cancer in women, and the mortality rate has reached 0.024% in some countries.
View Article and Find Full Text PDFZearalenone (ZEN) is a toxic compound produced by the metabolism of fungi () that threaten the food and agricultural industry belonging to the in foods and feeds. ZEN has toxic effects on human and animal health due to its mutagenicity, teratogenicity, carcinogenicity, nephrotoxicity, immunotoxicity, and genotoxicity. To ensure food safety, rapid, precise, and reliable analytical methods can be developed for the detection of toxins such as ZEN.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2020
Pollution due to heavy metal ions, including mercury, has become a major issue because of their toxicities. It is required to monitor mercury levels in aqueous media using fast and selective methods with high accuracy. Ellipsometry is a promising technique for instance when it's combined with the plasmon resonance phenomena.
View Article and Find Full Text PDFBackground: Residual antibiotics taken along with food consumed through the food chain are the main cause of the super-bacteria and may damage organs such as liver and kidney. Therefore, monitoring residual antibiotic levels of products in the food chain is both important and a requirement. Maximum residual limits for kanamycin and neomycin are 150 ng mL and 500 ng mL respectively, which are challenging for most sensor platforms.
View Article and Find Full Text PDFMycotoxins are toxic compounds produced by the metabolism of certain fungi that threaten the food and agricultural industry. Over hundreds of mycotoxins, one of the most common toxins, zearalenone (ZEN), has toxic effects on human and animal health due to its mutagenicity, treatogenicity, carcinogenicity, nephrotoxicity, immunotoxicity, and genotoxicity. In this work, attenuated internal reflection spectroscopic ellipsometry (AIR-SE) combined with the signal amplification via surface plasmon resonance conditions that were proved to be a highly sensitive analytical tool in bio-sensing was developed for the sensitive and selective ZEN detection in cereal products such as corn, wheat, rice, and oat.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2020
Rapid and reliable diagnosis of Human Immunodeficiency Virus (HIV) Type I that causes autoimmune deficiency syndrome (AIDS) is still important today. In this study, the HIV-I Tat (trans-activator of transcription) protein-specific RNA-aptamer (antiTat) and spectroscopic ellipsometer were preferred to increase specificity and sensitivity in the diagnosis. The ellipsometry is a well-known characterization tool for the ultra-thin films, where polarization state changes show surface deposition in terms of the ellipsometric angles, psi (Ψ) and delta (Δ).
View Article and Find Full Text PDFThis paper analyses the three-dimensional (3-D) surface morphology of optic surface of unworn contact lenses (CLs) using atomic force microscopy (AFM) and wavelet transform. Refractive powers of all lens samples were 2.50 diopters.
View Article and Find Full Text PDFThe scope of this study is to modify a Surface Plasmon Resonance (SPR) sensor slide with isophthalic acid to evaluate the possible application on the detection of copper(II) ions in aqueous media by total internal reflection ellipsometry. A gold sensor surface was modified by an electrochemical diazonium reduction modification method. The modified surfaces are characterized with cyclic voltammetry (CV) and ellipsometry.
View Article and Find Full Text PDFIn this article we report a technique for improved response of ellipsometric sensors by means of self-assembling molecules and gold nanoparticles (AuNPs). First, we have examined the effects of dipping time and solution concentration on formation of 3-aminopropyltriethoxysilane molecules on glass surfaces. All of the surfaces were characterized by atomic force microscopy, imaging ellipsometry, and contact angle goniometer.
View Article and Find Full Text PDF