UiO-66-NH material is a variant of Zr-based MOF most widely used for various applications, exhibiting unprecedented excellent hydrothermal and physicochemical stability. In this study, after UiO-66-NH reacted with chlorosulfonyl isocyanate, the fluorescent UiO-66-NG probe was prepared by interacting with the N-methylglucamine molecule. The structure of the prepared probe was confirmed by characterizing them with techniques such as FTIR, SEM, and XRD.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are used as ideal support materials thanks to their unique properties and have become the focus of interest in enzyme immobilization studies, especially in recent years. In order to increase the catalytic activity and stability of Candida rugosa lipase (CRL), a new fluorescence-based MOF (UiO-66-Nap) derived from UiO-66 was synthesized. The structures of the materials were confirmed by spectroscopic techniques such as FTIR, H NMR, SEM, and PXRD.
View Article and Find Full Text PDFIt is crucial to detect toxic chromium ions quickly, reliably, sensitively and at low concentrations. In recent years, fluorescence-based methods have been developed for the rapid detection and determination of toxic ions such as chromium. In present work, we focused on the development of a cellulose-based fluorescent probe (Cel-Nap) for the determination of Cr(VI).
View Article and Find Full Text PDFThe study reports designing of a new, low-cost and environmentally friendly colorimetric and fluorometric sensor by using cellulose-based materials for detection and determination of Fe(III). To make powder cellulose (Cel) and filter paper (PCel) fluorescent, they were modified with hexamethylene diisocyanate (HMDI) and 4-sulfo-1,8-naphthalimide (Nap). Fluorescent Cel-Nap and PCel-Nap materials were used for spectroscopic detection of Fe(III).
View Article and Find Full Text PDFBiotechnol Appl Biochem
December 2021
In the present study, we developed a disposable aptamer-based biosensor for rapid, sensitive, and reliable detection of acetamiprid (ACE). To improve the sensitivity of the aptasensor, poly-5-amino-2-mercapto-1,3,4-thiadiazole [P(AMT)] and gold nanoparticles (AuNPs) were progressively electrodeposited on the screen-printed electrode (SPE) surface by using cyclic voltammetry (CV) technique. For the determination of ACE, thiol-modified primary aptamer (Apt1) was selected by using the SELEX method and immobilized on the surface of the P(AMT) and AuNPs-modified SPE (SPE/P(AMT)/AuNPs) via AuS bonding.
View Article and Find Full Text PDF