Polyacrylonitrile (PAN) is a popular polymer that can be made into membranes using various techniques, such as electrospinning and phase inversion. Electrospinning is a novel technique that produces nonwoven nanofiber-based membranes with highly tunable properties. In this research, electrospun PAN nanofiber membranes with various concentrations (10, 12, and 14% PAN/dimethylformamide (DMF)) were prepared and compared to PAN cast membranes prepared by the phase inversion technique.
View Article and Find Full Text PDFThe utilization of novel materials is one of the reliable solutions for wastewater remediation processes, where they could be applied as adsorbents. Among these materials, MXenes are increasingly used composites in different applications, including water treatment techniques, due to their exceptional properties that enhance the total performance. In this work, we used TiCT MXene as an adsorbent for the Malachite Green dye removal, considering the dye's chromatic and leuco forms.
View Article and Find Full Text PDFIntroduction: COVID-19 is a pandemic that affected humans' lives and activities through the year 2020 in a way that was not witnessed in recent years. Many governments declared a complete lockdown as a try to stop the transmission of the disease. This lockdown resulted in a good recovery in environmental health, where air pollutants levels dramatically decreased.
View Article and Find Full Text PDFElectrospun membranes have shown promise for use in membrane distillation (MD) as they exhibit exceptionally low vapor transport. Their high porosity coupled with the occasional large pore can make them prone to wetting. In this work, initiated chemical vapor deposition (iCVD) is used to modify for electrospun membranes with increased hydrophobicity of the fiber network.
View Article and Find Full Text PDFReverse osmosis is a major process that produces soft water from saline water, and its output represents the majority of the overall desalination plants production. Developing efficient membranes for this process is the aim of many research groups and companies. In this work, we studied the effect of adding cellulose micro crystals (CMCs) and cellulose nano crystals (CNCs) to the support layer and thin film nanocomposite (TFN) membrane on the desalination performance.
View Article and Find Full Text PDFA composite, three-layered membrane for membrane distillation was prepared from electrospun polyvinylidene fluoride (PVDF) nanofibers supported by commercial polyethersulfone (PES) nanofiber based nonwoven from E.I. duPont de Nemours company (DuPont).
View Article and Find Full Text PDF