In recent years, nanoparticles have gained significant importance due to their unique properties, such as pharmacological, electrical, optical, and magnetic abilities, contributing to the growth of the science and technology sector. Particular naturally derived biomolecules with beneficial effects on menopause disorder have been the subject of studies of pharmaceutical formulation to obtain alternative pharmaceutical forms with increased bioavailability and without side effects, as in nanostructured lipid carriers (NLCs) loaded with such active ingredients. In the present study, one stage of a broader project, we have performed pharmacotoxicology studies for six combinatory innovative nanocapsule pharmaceutical forms containing active natural biomolecules before considering them as oral formulas for (1) in vitro toxicity studies on culture cells and (2) in vivo preclinical studies on a surgically induced menopause model of Wistar female rats, and the influence of the NLCs on key biochemical parameters: lipid profile (TG, Chol, HDL), glycemic markers (Gli), bone markers (Pac, Palc, Ca, phosphorus), renal markers (Crea, urea, URAC), inflammation (TNF), oxidative stress (GSH, MDA), and estrogen-progesterone hormonal profile.
View Article and Find Full Text PDFDue to combined therapeutical emissions, a high linear energy transfer Auger-electrons with the longer ranged β particles, Cu-based radiopharmaceuticals raise particular theragnostic interest in cancer, by joined therapeutic and real-time PET imaging properties. The study aimed to investigate the biological and molecular background of CuCl therapy by analyzing the damages and stress responses inflicted in various human normal and tumor cell lines. Colon (HT29 and HCT116) and prostate carcinoma (DU145) cell lines, as well as human normal BJ fibroblasts, were treated up to 72 h with 2-40 MBq/mL CuCl.
View Article and Find Full Text PDFIn the field of bioengineering, depending on the required application, the attachment of various biological entities to the biomaterial is either favored or needs to be prevented. Therefore, different surfaces modification strategies were developed in combination with the characteristics of the materials. The present contribution reports on the use of the specific surface property of a thermoresponsive polymer poly(N-isopropylacrylamide) pNIPAAM obtained by spin coating in combination with plasma treatment for tuning cell behavior on treated polymeric surfaces.
View Article and Find Full Text PDFWe report the design and fabrication by laser direct writing via two photons polymerization of innovative hierarchical structures with cell-repellency capability. The structures were designed in the shape of "mushrooms", consisting of an underside (mushroom's leg) acting as a support structure and a top side (mushroom's hat) decorated with micro- and nanostructures. A ripple-like pattern was created on top of the mushrooms, over length scales ranging from several µm (microstructured mushroom-like pillars, MMP) to tens of nm (nanostructured mushroom-like pillars, NMP).
View Article and Find Full Text PDFThe neurotensin is a tridecapeptide involved in the proliferation of colon cancer, the overexpression of neurotensin receptors occurring at an early stage development of many tumours. Targeting neurotensin receptors by using the same biological active molecule is an effective approach for both imaging quantification and treatment. The present work aimed to demonstrate the ability of radiolabelled neurotensin to specifically target colon cancer cells, and substantiate its usefulness in targeted imaging and radiotherapy, depending on the emission of the coupled radioisotope.
View Article and Find Full Text PDFWe demonstrate a proof of concept for magnetically-driven 2D cells organization on superparamagnetic micromagnets fabricated by laser direct writing via two photon polymerization (LDW via TPP) of a photopolymerizable superparamagnetic composite. The composite consisted of a commercially available, biocompatible photopolymer (Ormocore) mixed with 4 mg/mL superparamagnetic nanoparticles (MNPs). The micromagnets were designed in the shape of squares with 70 µm lateral dimension.
View Article and Find Full Text PDFThis study aims to investigate whether ionizing radiation combined with doxorubicin-conjugated iron oxide nanoparticles (NP-DOX) improves the internalization and cytotoxic effects of the nano-carrier-mediated drug delivery in MG-63 human osteosarcoma cells. NP-DOX was designed and synthesized using the co-precipitation method. Highly stable and crystalline nanoparticles conjugated with DOX were internalized in MG-63 cells through macropinocytosis and located in the perinuclear area.
View Article and Find Full Text PDFThe fabrication of 3D microstructures is under continuous development for engineering bone substitutes. Collagen/chitosan (Col/CT) blends emerge as biomaterials that meet the mechanical and biological requirements associated with bone tissue. In this work, we optimize the osteogenic effect of 3D microstructures by their functionalization with Col/CT blends with different blending ratios.
View Article and Find Full Text PDFRecent advances and large-scale use of hybrid imaging modalities like PET-CT have led to the necessity of improving nano-drug carriers that can facilitate both functional and metabolic screening in nuclear medicine applications. In this study, we focused on the evaluation of four potential imaging nanoparticle structures labelled with the Ga positron emitter. For this purpose, we functionalized NHS-activated PEG-gold nanoparticles with Ga-DOTA-Neuromedin B, Ga-DOTA-PEG(4)-BBN(7-14), Ga-DOTA-NT and Ga-DOTA-Neuromedin N.
View Article and Find Full Text PDFWe reported on three-dimensional (3D) superparamagnetic scaffolds that enhanced the mineralization of magnetic nanoparticle-free osteoblast cells. The scaffolds were fabricated with submicronic resolution by laser direct writing via two photons polymerization of Ormocore/magnetic nanoparticles (MNPs) composites and possessed complex and reproducible architectures. MNPs with a diameter of 4.
View Article and Find Full Text PDFThe neuron-specific -like Hu RNA-binding proteins were described to play an important role in neuronal differentiation and plasticity by ensuring the post-transcriptional control of RNAs encoding for various proteins. Although -like Hu proteins alterations were reported in diabetes or neuropathy, little is known about the regulation of neuron-specific -like Hu RNA-binding proteins in sensory neurons of dorsal root ganglia (DRG) due to the diabetic condition. The goal of our study was to analyze the gene and protein expression of HuB, HuC, and HuD in DRG sensory neurons in diabetes.
View Article and Find Full Text PDFVoltage-gated calcium channels and estrogen receptors are essential players in uterine physiology, and their association with different calcium signaling pathways contributes to healthy and pathological conditions of the uterine myometrium. Among the properties of the various cell subtypes present in human uterine myometrium, there is increasing evidence that calcium oscillations in telocytes (TCs) contribute to contractile activity and pregnancy. Our study aimed to evaluate the effects of beta-estradiol on voltage-gated calcium channels and estrogen receptors in TCs from human uterine myometrium and to understand their role in pregnancy.
View Article and Find Full Text PDFWe designed, fabricated and optimized 3D biomimetic magnetic structures that stimulate the osteogenesis in static magnetic fields. The structures were fabricated by direct laser writing via two-photon polymerization of IP-L780 photopolymer and were based on ellipsoidal, hexagonal units organized in a multilayered architecture. The magnetic activity of the structures was assured by coating with a thin layer of collagen-chitosan-hydroxyapatite-magnetic nanoparticles composite.
View Article and Find Full Text PDFA major limitation of existing 3D implantable structures for bone tissue engineering is that most of the cells rapidly attach on the outer edges of the structure, restricting the cells penetration into the inner parts and causing the formation of a necrotic core. Furthermore, these structures generally possess a random spatial arrangement and do not preserve the isotropy on the whole volume. Here, we report on the fabrication and testing of an innovative 3D hierarchical, honeycomb-like structure (HS), with reproducible and isotropic arhitecture, that allows in 'volume' migration of osteoblasts.
View Article and Find Full Text PDFBystander effects are indirect consequences of radiation and many other stress factors. They occur in cells that are not directly exposed to these factors, but receive signals from affected cells either by gap junctions or by molecules released in the medium. Characterizing these effects and deciphering the underlying mechanisms involved in radiation-induced bystander effects are relevant for cancer radiotherapy and radioprotection.
View Article and Find Full Text PDFThis work describes a versatile laser-based protocol for fabricating micro-patterned, electrically conductive titanium-polypyrrole/poly(lactic-co-glycolic)acid (Ti-PPy/PLGA) constructs for electrically stimulated (ES) osteogenesis. Ti supports were patterned using fs laser ablation in order to create high spatial resolution microstructures meant to provide mechanical resistance and physical cues for cell growth. Matrix Assisted Pulsed Laser Evaporation (MAPLE) was used to coat the patterned Ti supports with PPy/PLGA layers acting as biocompatible surfaces having chemical and electrical properties suitable for cell differentiation and mineralization.
View Article and Find Full Text PDFPhysical or chemical stress applied to a cell system trigger a signal cascade that is transmitted to the neighboring cell population in a process known as bystander effect. Despite its wide occurrence in biological systems this phenomenon is mainly documented in cancer treatments. Thus understanding whether the bystander effect acts as an adaptive priming element for the neighboring cells or a sensitization factor is critical in designing treatment strategies.
View Article and Find Full Text PDFThe formation of advanced glycation end products is one of the major factors involved in diabetic neuropathy, aging, and neurodegenerative diseases. Reactive carbonyl compounds, such as methylglyoxal (MG), play a key role in cross-linking to various proteins in the extracellular matrix, especially in neurons, which have a high rate of oxidative metabolism. The MG effect was tested on dorsal root ganglia primary neurons in cultures from adult male Balb/c mice.
View Article and Find Full Text PDF