Publications by authors named "Musolino Caterina"

BACKGROUND: Whether phlebotomy alone can adequately maintain target hematocrit in patients with low-risk polycythemia vera (PV) remains elusive. METHODS: In a phase 2 open-label randomized trial, we compared ropeginterferon alfa-2b (ropeg; 100 μg every 2 weeks) with phlebotomy only regarding maintenance of a median hematocrit level (≤45%) over 12 months in the absence of progressive disease (primary end point). In follow-up, crossover to the alternative treatment group was allowed if the primary end point was not met.

View Article and Find Full Text PDF

In patients with low-risk polycythemia vera, exposure to low-dose Ropeginterferon alfa-2b (Ropeg) 100 µg every 2 weeks for 2 years was more effective than the standard treatment of therapeutic phlebotomy in maintaining target hematocrit (HCT) (< 45%) with a reduction in the need for phlebotomy without disease progression. In the present paper, we analyzed drug survival, defined as a surrogate measure of the efficacy, safety, adherence, and tolerability of Ropeg in patients followed up to 5 years. During the first 2 years, Ropeg and phlebotomy-only (Phl-O) were discontinued in 33% and 70% of patients, respectively, for lack of response (12 in the Ropeg arm vs.

View Article and Find Full Text PDF

Redox adaptation is essential for human health, as the physiological quantities of non-radical reactive oxygen species operate as the main second messengers to regulate normal redox reactions by controlling several sensors. An abnormal increase reactive oxygen species, called oxidative stress, induces biological injury. For this reason, variations in oxidative stress continue to receive consideration as a possible approach to treat leukemic diseases.

View Article and Find Full Text PDF

Aquaporins are transmembrane molecules regulating the transfer of water and other compounds such as ions, glycerol, urea, and hydrogen peroxide. Their alteration has been reported in several conditions such as cancer. Tumor progression might be enhanced by aquaporins in modifying tumor angiogenesis, cell volume adaptation, proteases activity, cell-matrix adhesions, actin cytoskeleton, epithelial-mesenchymal transitions, and acting on several signaling pathways facilitating cancer progression.

View Article and Find Full Text PDF

Liquid biopsy is one of the fastest emerging fields in cancer evaluation. Circulating tumour cells and tumour-originated DNA in plasma have become the new targets for their possible employ in tumour diagnosis, and liquid biopsy can define tumour burden without invasive procedures. Multiple Myeloma, one of the most frequent hematologic tumors, has been the target of therapeutic progresses in the last few years.

View Article and Find Full Text PDF

The immune system is made up by an extremely composite group of cells, whose regulated and harmonious activity is fundamental to maintain health. The mast cells are an essential effector of inflammatory response which is characterized by a massive release of mediators accumulated in cytoplasmic secretory granules. However, beyond the effects on immune response, mast cells can modify bone metabolism and are capable of intervening in the genesis of pathologies such as osteoporosis and osteopenia.

View Article and Find Full Text PDF

Cold atmospheric plasma is an ionized gas produced near room temperature; it generates reactive oxygen species and nitrogen species and induces physical changes, including ultraviolet, radiation, thermal, and electromagnetic effects. Several studies showed that cold atmospheric plasma could effectively provoke death in a huge amount of cell types, including neoplastic cells, via the induction of apoptosis, necrosis, and autophagy. This technique seems able to destroy tumor cells by disturbing their more susceptible redox equilibrium with respect to normal cells, but it is also able to cause immunogenic cell death by enhancing the immune response, to decrease angiogenesis, and to provoke genetic and epigenetics mutations.

View Article and Find Full Text PDF

Unconventional T cells and innate lymphoid cells (ILCs) make up a heterogeneous set of cells that characteristically show prompt responses toward specific antigens. Unconventional T cells recognize non-peptide antigens, which are bound and presented by diverse non-polymorphic antigen-presenting molecules and comprise γδ T cells, MR1-restricted mucosal-associated invariant T cells (MAITs), and natural killer T cells (NKTs). On the other hand, ILCs lack antigen-specific receptors and act as the innate counterpart to the T lymphocytes found in the adaptive immune response.

View Article and Find Full Text PDF

In multiple myeloma, cells of the bone marrow microenvironment have a relevant responsibility in promoting the growth, survival, and drug resistance of multiple myeloma plasma cells. In addition to the well-recognized role of genetic lesions, microenvironmental cells also present deregulated epigenetic systems. However, the effect of epigenetic changes in reshaping the tumour microenvironment is still not well identified.

View Article and Find Full Text PDF

The microenvironment of the tumor cells is central to its phenotypic modification. One of the essential elements of this milieu is thermal regulation. An augment in local temperature has been reported to augment the tumor cell's responsiveness to chemoand radiation treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Exosomes are tiny membrane vesicles that play a key role in communication between cells and contain various biological molecules, influencing tumor development either positively or negatively.
  • Exosomes show promise as a cell-free treatment option for tumors, with evidence from laboratory and animal studies supporting their use in delivering therapeutic substances.
  • The review highlights advancements in exosome modification techniques that could enhance their effectiveness against tumors, transforming the tumor environment from supportive to inhibitory.
View Article and Find Full Text PDF

Circular RNAs (circRNAs) are a novel type of covalently closed RNAs involved in several physiological and pathological processes. They display tissue-specific expression and are constant, abundant, and highly conserved, making them perfect markers for diagnosis and prognosis. Several studies have proposed that circRNAs are also differentially produced in malignancies where they have oncogenic effects.

View Article and Find Full Text PDF

Raised oxidative stress and abnormal redox status are typical features of multiple myeloma cells, and the identification of the intimate mechanisms that regulate the relationships between neoplastic cells and redox homeostasis may reveal possible new anti-myeloma therapeutic targets to increase the effectiveness of anti-myeloma drugs synergistically or to eradicate drug-resistant clones while reducing toxicity toward normal cells. An alteration of the oxidative state is not only responsible for the onset of multiple myeloma and its progression, but it also appears essential for the therapeutic response and for developing any chemoresistance. Our review aimed to evaluate the literature's current data on the effects of oxidative stress on the response to drugs generally employed in the therapy of multiple myeloma, such as proteasome inhibitors, immunomodulators, and autologous transplantation.

View Article and Find Full Text PDF

Effectual cell-to-cell communication is essential to the development and differentiation of organisms, the preservation of tissue tasks, and the synchronization of their different physiological actions, but also to the proliferation and metastasis of tumor cells. Tunneling nanotubes (TNTs) are membrane-enclosed tubular connections between cells that carry a multiplicity of cellular loads, such as exosomes, non-coding RNAs, mitochondria, and proteins, and they have been identified as the main participants in healthy and tumoral cell communication. TNTs have been described in numerous tumors in in vitro, ex vivo, and in vivo models favoring the onset and progression of tumors.

View Article and Find Full Text PDF

Artificial intelligence has recently modified the panorama of oncology investigation thanks to the use of machine learning algorithms and deep learning strategies. Machine learning is a branch of artificial intelligence that involves algorithms that analyse information, learn from that information, and then employ their discoveries to make abreast choice, while deep learning is a field of machine learning basically represented by algorithms inspired by the organization and function of the brain, named artificial neural networks. In this review, we examine the possibility of the artificial intelligence applications in multiple myeloma evaluation, and we report the most significant experimentations with respect to the machine and deep learning procedures in the relevant field.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a hematological disease that is still not curable. The bone marrow milieu, with cellular and non-cellular elements, participate in the creation of a pro-tumoral environment enhancing growth and survival of MM plasma cells. Exosomes are vesicles oscillating in dimension between 50 nm and 100 nm in size that can be released by various cells and contribute to the pathogenesis and progression of MM.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus type 2 has been responsible for an unprecedented pandemic, and nowadays, several vaccines proved to be effective and safe, representing the only available strategy to stop the pandemic. While millions of people have safely received vaccine, rare and unusual thrombotic events have been reported and are undergoing investigations to elucidate their nature. Understanding initial trigger, underlying pathophysiology and the reasons for specific site localization of thrombotic events are a matter of debate.

View Article and Find Full Text PDF

Secondary immunodeficiency is reported in most patients with hematological malignancies such as chronic lymphocytic leukemia and multiple myeloma. The aim of our review was to evaluate the existing literature data on patients with hematological malignancies, with regard to the effect of immunodeficiency on the outcome, the clinical and therapeutic approach, and on the onset of noninfectious complications, including thrombosis, pleural effusion, and orofacial complications. Immunodeficiency in these patients has an intense impact on their risk of infection, in turn increasing morbidity and mortality even years after treatment completion.

View Article and Find Full Text PDF

Several neurotransmitters and neuropeptides were reported to join in or cooperate with different cells of the immune system, bone marrow, and peripheral cells. Numerous data support that neuroactive molecules might control immune system activity and hemopoiesis operating on lymphoid organs and the primary hematopoietic unit, the hematopoietic niche. Furthermore, many compounds seem to be able to take part in the leukemogenesis and lymphomagenesis process and in the onset of multiple myeloma.

View Article and Find Full Text PDF

Objective: Multiple Myeloma (MM) is a haematological disease resulting from the neoplastic transformation of plasma cells. The uncontrolled growth of plasma cells in the bone marrow and the delivery of several cytokines causes bone erosion that often does not regress, even in the event of disease remission. MM is characterised by a multi-step evolutionary path, which starts with an early asymptomatic stage defined as monoclonal gammopathy of undetermined significance (MGUS) evolving to overt disease.

View Article and Find Full Text PDF

Immune thrombocytopenia is a haematological, autoimmune disorder characterized by elevated platelet demolition due to the presence of antiplatelet autoantibodies derived from B cells and to an irregular, deficient process of platelets production in bone marrow. In this review, after a brief presentation of 'old' strategies used nowadays yet, we focused on new drugs used in the treatment of immune thrombocytopenia and their mechanism of action and posology, basing on the last scientific literature. The observation that CoViD-19 can be associated with immune thrombocytopenia is also put in evidence.

View Article and Find Full Text PDF

The endocannabinoid system (ECS) is a composite cell-signaling system that allows endogenous cannabinoid ligands to control cell functions through the interaction with cannabinoid receptors. Modifications of the ECS might contribute to the pathogenesis of different diseases, including cancers. However, the use of these compounds as antitumor agents remains debatable.

View Article and Find Full Text PDF

Chronic myeloid leukemia (CML) has long been considered as a model of cancer caused by a single-driver genetic lesion (BCR/ABL1 rearrangement) that codes for a unique, gain-of-function, deregulated protein. However, in the last decade, high-throughput sequencing technologies have shed light on a more complex genetic landscape, in which additional mutations may be found in different disease phases, including diagnosis. These genetic lesions may even precede the occurrence of the Philadelphia (Ph) chromosome, pointing to an antecedent premalignant state of clonal hematopoiesis (CH) at least in some patients.

View Article and Find Full Text PDF

Vitamin D is a steroid hormone that is essential for bone mineral metabolism and it has several other effects in the body, including anti-cancer actions. Vitamin D causes a reduction in cell growth by interrupting the cell cycle. Moreover, the active form of vitamin D, i.

View Article and Find Full Text PDF