The development of vascularized tissue is a substantial challenge within the field of tissue engineering and regenerative medicine. Studies have shown that positively-charged microspheres exhibit dual-functions: (1) facilitation of vascularization and (2) controlled release of bioactive compounds. In this study, gelatin-coated microspheres were produced and processed with either EDC or transglutaminase, two crosslinkers.
View Article and Find Full Text PDFThis research focuses on the plant-mediated green synthesis process to produce gold nanoparticles (Au NPs) using upland cress (Barbarea verna), as various biomolecules within the upland cress act as both reducing and capping agents. The synthesized gold nanoparticles were thoroughly characterized using UV-vis spectroscopy, surface charge (zeta potential) analysis, scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), atomic force microscopy (AFM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and X-ray diffraction (XRD). The results indicated the synthesized Au NPs are spherical and well-dispersed with an average diameter ~11 nm and a characteristic absorbance peak at ~529 nm.
View Article and Find Full Text PDFA major challenge in tissue engineering is the formation of vasculature in tissue and organs. Recent studies have shown that positively charged microspheres promote vascularization, while also supporting the controlled release of bioactive molecules. This study investigated the development of gelatin-coated pectin microspheres for incorporation into a novel bioink.
View Article and Find Full Text PDF