Publications by authors named "Musial W"

Background: Using hydrogels for the controlled release of drugs is beneficial for patients, who then receive the proper dose of the medicinal substance. In addition, the formulation can provide more consistent drug absorption while reducing the frequency of dosing.

Objectives: The aim of this investigation is to propose a novel HA (sodium hyaluronate)-based hydrogel for intra-articular injection doped with synthetic polymers and incorporated with bupivacaine hydrochloride (Bu) as a local anesthetic.

View Article and Find Full Text PDF

(1) Background: The aim of the work was to investigate the influence of selected physico-chemical factors on the solubility and release rate of CT (cryptotanshinone) in alcohologels. (2) Methods: The alcohologels of methylcellulose (MC), hydroksyethylcellulose (HEC), polyacrylic acid (PA) and polyacrylic acid crosspolymer (PACP) with CT were prepared and/or doped with native potato starch (SN) and modified citrate starches (SM2.5 and SM10).

View Article and Find Full Text PDF

The synthesis of poly(N-isopropyl acrylamide) (pNIPA)-based polymers via the surfactant-free precipitation polymerization (SFPP) method produced thermosensitive nanospheres with a range of distinctive physicochemical properties. Nano- and microparticles were generated using various initiators, significantly influencing particle characteristics, including the hydrodynamic diameter (D), which varied from 87.7 nm to 1618.

View Article and Find Full Text PDF

To reduce the risk of side effects and enhance therapeutic efficiency, drug delivery systems that offer precise control over active ingredient release while minimizing burst effects are considered advantageous. In this study, a novel approach for the controlled release of lamivudine (LV) was explored through the fabrication of polyelectrolyte-coated microparticles. LV was covalently attached to poly(ε-caprolactone) via ring-opening polymerization, resulting in a macromolecular prodrug (LV-PCL) with a hydrolytic release mechanism.

View Article and Find Full Text PDF

is one of the most common dermatological diseases and is strongly connected with the pathological growth of the . More than half of the cultures of this bacterium are resistant to antibiotics, resulting in the proposal of the use of antibacterial peptides as an alternative to traditional antibiotics. Ascorbic acid (AA) and its antioxidant properties may ally in acne therapy.

View Article and Find Full Text PDF

Liposomal preparations play an important role as formulations for transdermal drug delivery; however, the electrical conductivity of these systems is sparingly evaluated. The aim of the study was to outline the range of the values of electrical conductivity values that may be recorded in the future pharmaceutical systems in the context of their viscosity. The electrical conductivity, measured by a conductivity probe of k = 1.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers synthesized thermosensitive polymers (P1-P6) using N-isopropylacrylamide and poly(ethylene glycol) dimethacrylates through a method called surfactant-free precipitation polymerization at 70 °C, monitoring the process using conductivity.* -
  • The study measured properties like hydrodynamic diameters, polydispersity indexes, and zeta potential across a temperature range of 18-45 °C using techniques like dynamic light scattering and electrophoretic mobilities.* -
  • Characterization methods including ATR-FTIR, H NMR, thermogravimetric analysis, and others revealed that the length of the cross-linker chain affects the physical and chemical properties
View Article and Find Full Text PDF

Injections are one way of delivering drugs directly to the joint capsule. Employing this possibility, local anesthetic, such as bupivacaine (Bu), in the form of the suspension can be administered. The aim of this work was to propose a methylcellulose-based hydrogel-incorporated bupivacaine for intra-articular injections and to study the release kinetics of the drug from the hydrogel to different acceptor media, reflecting the synovial fluid of a healthy joint and the synovial fluid of an inflamed joint.

View Article and Find Full Text PDF

The health-promoting properties of black elderberry are related to its high content of polyphenols (natural antioxidants), which eliminate free radicals and prevent the formation of oxidative stress responsible for many diseases. The aim of this work was to determine, the anti-radical effect of infusions based on the reaction with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and galvinoxyl (Glv) radicals and to determine the function describing the disappearance curves of these radicals. The antioxidant properties of infusions obtained from the flowers and fruits of this plant were tested using the modified Brand-Williams method using DPPH and Glv radicals.

View Article and Find Full Text PDF

Six derivatives of poly--vinylcaprolactam (PNVCL) P1-P6 were synthesized via surfactant-free precipitation polymerization (SFPP) at 70 °C, with potassium persulfate (KPS) as the initiator. P5 and P6 were synthesized using the cross-linker ,'-Methylenebisacrylamide (MBA). The conductivity was measured to monitor the polymerization process.

View Article and Find Full Text PDF
Article Synopsis
  • * The research evaluated the antibiotic's stability over 84 days and compared the rheological properties and microbiological activity of different formulations, noting significant differences with higher ethanol concentrations.
  • * Results indicated that while hydrogels with lower ethanol (0%, 5%, and 25%) showed better stability and similar properties, the 50% ethanol formulation had lower stability and decreased tetracycline effectiveness, but enhanced antimicrobial action against acne-causing bacteria.
View Article and Find Full Text PDF

Sodium hyaluronate (HA) is a natural polysaccharide. This biopolymer occurs in many tissues of living organisms. The regenerating, nourishing, and moisturizing properties as well as the rheological properties of HA enable its application in the pharmaceutical industry as a carrier of medicinal substances.

View Article and Find Full Text PDF

The aim of the work was to determine important parameters of the course of π-A isotherms, which can determine the HLB (hydrophilic-lipophilic balance) value of surfactant mixtures with selected structural features, such as a straight or branched hydrocarbon chain and a double bond, using RSM (response surface methodology) computational methods. Mixtures of surfactants derived from fatty acids and sorbitan with specific HLB values were evaluated by Langmuir trough. The resulting elasticity modules (ELM) and molecules surfaces (SAM) were evaluated via response surface methodology and respective equations were calculated.

View Article and Find Full Text PDF

The aim of this study was to characterize and compare the zeta potential of particles sensitive to external thermal stimuli. Poly N-(isopropyl) acrylamide (PNIPA) was selected as the thermosensitive polymer with a volume phase transition temperature (VPTT) between 32 and 33 °C. The hydrodynamic diameter (D) of the nanoparticles was measured by dynamic light scattering.

View Article and Find Full Text PDF

Background: Many substances are used to increase the viscosity of eye drops and reduce their surface tension. Their function is to prolong the persistence of the product on the surface of the eyeball and to increase the bioavailability of the pharmacologically active ingredient.

Objectives: To investigate the surface tension of substances added to the eye drops, with the main aim of modulating properties of the preparation.

View Article and Find Full Text PDF

The modification of biomaterial surfaces has become increasingly relevant in the context of ongoing advancements in tissue engineering applications and the development of tissue-mimicking polymer materials. In this study, we investigated the layer-by-layer (LbL) deposition of polyelectrolyte multilayer protein reservoirs consisting of poly-l-lysine (PLL) and hyaluronic acid (HA) on the hydrophobic surface of poly(glycerol sebacate) (PGS) elastomer. Using the methods of isothermal titration calorimetry and surface plasmon resonance, we systematically investigated the interactions between the polyelectrolytes and evaluated the deposition process in real time, providing insight into the phenomena associated with film assembly.

View Article and Find Full Text PDF

The aim of the study was to assess the effect of the synthesized antibacterial peptides: P2 (WKWK)-KWKWK-NH, P4 (C12)-KKKK-NH, P5 (KWK)-KWWW-NH, and P6 (KK)-KWWW-NH on the physicochemical properties of a model biological membrane made of azolectin or lecithin. The Langmuir Wilhelmy method was used for the experiments. Based on the compressibility factor, it was determined that the monolayers formed of azolectin and peptides in the aqueous subphase are in the condensed liquid phase.

View Article and Find Full Text PDF

Background And Purpose: The aim of the work was to compare the interactions of three newly synthesized non-toxic starch derivatives, with varied anionic and non-ionic functional groups with methylene blue (MB) as a model cationic drug, and selection of starch derivative with highest affinity to the MB.

Experimental Approach: The native potato starch (SN), modified acetylation (SM1), esterification and crosslinking (SM2) and crosslinking (SM3), was evaluated in MB adsorption studies and assessed by FTIR, PXRD, and DSC.

Key Results: The adsorption of MB on SM2 and SM3 matched the BET isotherm model, which confirmed physisorption on the low-porous surface.

View Article and Find Full Text PDF

The thermal decomposition and kinetic parameters of four polymers, PN-1, PN-05, PN-01, and PN-005, were determined by thermogravimetry (TGA/DTG) under non-isothermal conditions. -isopropylacrylamide (NIPA)-based polymers were synthesized by the surfactant-free precipitation polymerization (SFPP) with different concentrations of the anionic initiator potassium persulphate (KPS). Thermogravimetric experiments were carried out in the temperature range of 25-700 °C at four heating rates, 5, 10, 15, and 20 °C min, under a nitrogen atmosphere.

View Article and Find Full Text PDF

The properties of sodium hyaluronate (HA), such as hygroscopicity, flexibility, the ability to form hydrogels, as well as biocompatibility and biodegradability, are beneficial for the applications in pharmaceutical technology, cosmetics industry, and aesthetic medicine. The aim of this study was to prepare HA-based hydrogels doped with active pharmaceutical ingredient (API): a cationic drug-lidocaine hydrochloride or anionic drug-sodium. The interaction between the carrier and the implemented active pharmaceutical substances was evaluated in prepared systems by applying viscometric measurements, performing release tests of the drug from the obtained formulations, and carrying out FTIR and DSC.

View Article and Find Full Text PDF

The aim of the study was to evaluate the effect of the peptide structure (WKWK)-KWKWK-NH, P4 (C12)-KKKK-NH, P5 (KWK)-KWWW-NH, P6 (KK)-KWWW-NH on their physicochemical properties. The thermogravimetric method (TG/DTG) was used, which made it possible to observe the course of chemical reactions and phase transformations occurring during the heating of solid samples. Based on the DSC curves, the enthalpy of the processes occurring in the peptides was determined.

View Article and Find Full Text PDF

The problem of drug delivery often concentrates on the prolongation of drug activity. Application of natural polymers which are biodegradable and inexpensive is in the interest of many researchers. The aim of this study was the application of newly synthesized starch derivatives as potential functional excipients proposed for hydrophilic gel with lidocaine hydrochloride (LH) to prolong drug release from the hydrogel matrix.

View Article and Find Full Text PDF

Due to its high instability and rapid degradation under adverse conditions, tetracycline hydrochloride (TC) can cause difficulties in the development of an effective but stable formulation for the topical treatment of acne. The aim of the following work was to propose a hydrogel formulation that would ensure the stability of the antibiotic contained in it. Additionally, an important property of the prepared formulations was the activity of the alcoholamines contained in them against the components of the model sebum.

View Article and Find Full Text PDF

The knowledge of interactions between different molecules is undoubtedly the driving force of all contemporary biomedical and biological sciences. Chemical biology/biological chemistry has become an important multidisciplinary bridge connecting the perspectives of chemistry and biology to the study of small molecules/peptidomimetics and their interactions in biological systems. Advances in structural biology research, in particular linking atomic structure to molecular properties and cellular context, are essential for the sophisticated design of new medicines that exhibit a high degree of druggability and very importantly, druglikeness.

View Article and Find Full Text PDF

The highly inert surface of polyester micro- and nano- drug carriers is a challenging substrate for further modification. The presence of surface moieties suitable for macromolecule coupling is crucial in the development of targeted drug delivery systems. Among available methods of surface activation, those based on adsorption of charged macromolecules may be carried out in mild conditions.

View Article and Find Full Text PDF