Deep neural networks tend to suffer from the overfitting issue when the training data are not enough. In this paper, we introduce two metrics from the intra-class distribution of correct-predicted and incorrect-predicted samples to provide a new perspective on the overfitting issue. Based on it, we propose a knowledge distillation approach without pretraining a teacher model in advance named Tolerant Self-Distillation (TSD) for alleviating the overfitting issue.
View Article and Find Full Text PDFPurpose: This study aimed to determine the efficacy of a multimodal deep learning (DL) model using optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) images for the assessment of choroidal neovascularization (CNV) in neovascular age-related macular degeneration (AMD).
Methods: This retrospective and cross-sectional study was performed at a multicentre, and the inclusion criteria were age >50 years and a diagnosis of typical neovascular AMD. The OCT and OCTA data for an internal data set and two external data sets were collected.