Publications by authors named "Musharavati F"

The current study aims to examine the techno-economic and environmental assessment of biorefinery development within a circular bioeconomy context by using an organic fraction of municipal solid waste (OFMSW) by extraction of lipids, carbohydrates, and proteins with 98, 51 and 62 % by mass of conversion efficiency and yield recovery, and value-added fractions production as well. Fatty acid methyl ester (biodiesel) and glycerol (biofuel) were produced by applying transesterification process, and the remaining biomass was converted into biocrude oil by thermal liquefication. The biorefinery using 613 kg of OFMSW produced biodiesel, glycerol, and bioethanol with 126 litter, 14.

View Article and Find Full Text PDF

The UK's National Joint Registry (NJR) and the American Joint Replacement Registry (AJRR) of 2022 revealed that total hip replacement (THR) is the most common orthopaedic joint procedure. The NJR also noted that 10-20% of hip implants require revision within 1 to 10 years. Most of these revisions are a result of aseptic loosening, dislocation, implant wear, implant fracture, and joint incompatibility, which are all caused by implant geometry disparity.

View Article and Find Full Text PDF

With an expectation of an increased number of revision surgeries and patients receiving orthopedic implants in the coming years, the focus of joint replacement research needs to be on improving the mechanical properties of implants. Head-stem trunnion fixation provides superior load support and implant stability. Fretting wear is formed at the trunnion because of the dynamic load activities of patients, and this eventually causes the total hip implant system to fail.

View Article and Find Full Text PDF

In this paper, a surface acoustic wave (SAW) sensor for hip implant geometry was proposed for the application of total hip replacement. A two-port SAW device was numerically investigated for implementation with an operating frequency of 872 MHz that can be used in more common radio frequency interrogator units. A finite element analysis of the device was developed for a lithium niobate (LiNBO3) substrate with a Rayleigh velocity of 3488 m/s on COMSOL Multiphysics.

View Article and Find Full Text PDF

Total hip replacement (THR) is a common orthopedic surgery technique that helps thousands of individuals to live normal lives each year. A hip replacement replaces the shattered cartilage and bone with an implant. Most hip implants fail after 10-15 years.

View Article and Find Full Text PDF

Cardiovascular diseases are the most common causes of death around the world. To detect and treat heart-related diseases, continuous blood pressure (BP) monitoring along with many other parameters are required. Several invasive and non-invasive methods have been developed for this purpose.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on classifying chest X-ray images of COVID-19, SARS, and MERS using deep learning, particularly convolutional neural networks (CNNs), analyzing a new database of images called QU-COVID-family which includes 423 COVID-19, 144 MERS, and 134 SARS images.
  • - A recognition system was developed to segment lung regions and categorize the images, finding that the InceptionV3 model performed the best, achieving high sensitivities in classifying the diseases using both plain and segmented X-rays.
  • - While segmentation led to a decrease in classification performance compared to plain X-rays, it provided more reliable results by focusing the network's learning on the critical areas of the lungs.
View Article and Find Full Text PDF

In the current research, an innovative biomass-based energy system is proposed for power and desalinated water production. The plant's primary components consist of a gasifier, a compressor, a heat exchanger, a gas turbine, a combustion chamber, and a Multi-effect desalination with thermal vapor compression (MED-TVC) unit. A comprehensive thermodynamic and thermoeconomic assessment is conducted on the proposed system.

View Article and Find Full Text PDF

A novel and systematic procedure to design a co-polarized electromagnetic metamaterial (MM) absorber with desired outputs and resonance frequencies for dual-band WiFi signal absorption is presented. The desired resonance frequencies with expected S parameters' values were first designed as an equivalent circuit with extensive analysis and then implemented into frequency-selective MM absorber by numerical simulation with precise LRC elements, satisfying least unit cell area (0.08λ), substrate thickness (0.

View Article and Find Full Text PDF

Detecting COVID-19 at an early stage is essential to reduce the mortality risk of the patients. In this study, a cascaded system is proposed to segment the lung, detect, localize, and quantify COVID-19 infections from computed tomography images. An extensive set of experiments were performed using Encoder-Decoder Convolutional Neural Networks (ED-CNNs), UNet, and Feature Pyramid Network (FPN), with different backbone (encoder) structures using the variants of DenseNet and ResNet.

View Article and Find Full Text PDF

Implantable antennas are mandatory to transfer data from implants to the external world wirelessly. Smart implants can be used to monitor and diagnose the medical conditions of the patient. The dispersion of the dielectric constant of the tissues and variability of organ structures of the human body absorb most of the antenna radiation.

View Article and Find Full Text PDF

In this study, a combination of reverse microemulsion and hydrothermal techniques were used to synthesize HA. A hydrothermal method was used to synthesize HA/TiO/CNT nanocomposite powders. Cold and hot isostatic pressing techniques were used to fabricate tablet-shaped samples.

View Article and Find Full Text PDF

In this work, nickel cobaltite (NiCoO) nanosheets with a porous structure were fabricated on nickel foam as a working electrode for supercapacitor applications. The nanosheets were fabricated by electrochemical deposition of nickel-cobalt hydroxide on the nickel foam substrate at ambient temperature in a three-electrode cell followed by annealing at 300 °C to transform the coating into a porous NiCoO nanosheet. Field emission scanning electron microscopy and transmission electron microscopy revealed a three-dimensional mesoporous structure, which facilitates ion transport and electronic conduction for fast redox reactions.

View Article and Find Full Text PDF

This work aims at analyzing elastic wave characteristics in a polymeric nanocomposite curved beam reinforced by graphene nanoplatelets (GNPs). GNPs are adopted as a nanofiller inside the matrix to enhance the effective properties, which are approximated through Halpin-Tasi model and a modified rule of mixture. A higher-order shear deformation theory accounting for thickness stretching and the general strain gradient model to have both nonlocality and strain gradient size-dependency phenomena are adopted to model the nanobeam.

View Article and Find Full Text PDF

The current work is about analysis and multi-objective optimization (MOO) of weir-type solar still systems equipped with phase change material (PCM) regarding the exergetic and economic performance. To do so, the energetic and exergetic modeling of the suggested system is conducted then the substantial economic factors is applied to obtain the total cost rate of the considered SSDS. The total exergetic efficiency and total annual cost (TAC) is considered objective functions.

View Article and Find Full Text PDF

As many as 80% of patients with TAR die on the spot while out of those reaching a hospital, 30% would die within 24 hours. Thus, it is essential to better understand and prevent this injury. The exact mechanics of TAR are unknown.

View Article and Find Full Text PDF

In this study, we synthesized binder-free NiCoO@NiCoO nanostructured materials on nickel foam (NF) by combined hydrothermal and cyclic voltammetry deposition techniques followed by calcination at 350 °C to attain high-performance supercapacitors. The hierarchical porous NiCoO@NiCoO structure, facilitating faster mass transport, exhibited good cycling stability of 83.6% after 5000 cycles and outstanding specific capacitance of 1398.

View Article and Find Full Text PDF

In this study, to fabricate a non-binder electrode, we grew nickel-cobalt sulfide (NCS) nanotubes (NTs) on a Ni foam substrate using a hydrothermal method through a two-step approach, namely in situ growth and an anion-exchange reaction. This was followed by the electrodeposition of double-layered nickel-cobalt hydroxide (NCOH) over a nanotube-coated substrate to fabricate NCOH core-shell nanotubes. The final product is called NCS@NCOH herein.

View Article and Find Full Text PDF

Hydroxyapatite/graphene oxide/platinum (HA/GO/Pt) nanocomposite was synthesized and electrodeposited on a pure zirconium substrate. The coated zirconium was annealed at 200, 300, 400, and 600°C in vacuum furnace in presence of argon gas. The structure and morphology of the coated samples were characterized.

View Article and Find Full Text PDF