Non-healing wounds are a major threat to public health throughout the United States. Tissue healing is complex multifactorial process that requires synchronicity of several cell types. Endolysosomal trafficking, which contributes to various cell functions from protein degradation to plasma membrane repair, is an understudied process in the context of wound healing.
View Article and Find Full Text PDFThis study evaluates scaffold degradation and neotissue formation as a function of sealant polymer composition in tissue-engineered vascular grafts (TEVGs). Scaffolds fabricated from polyglycolic acid core and sealant composed of polycaprolactone (PCL), poly-L-lactic-acid (PLLA) or 50:50 copolymer poly(ε-caprolactone-co-L-lactide) (PCLA) were analyzed using accelerated degradation and scanning electron microscopy, and following implantation in a murine inferior vena cava interposition model. and characterization revealed statistically greater degradation of PCLA compared with both PCL and PLLA scaffolds, with similar neotissue formation across all groups.
View Article and Find Full Text PDFAn artist-led exploration of portrait accuracy and likeness involved 12 Artists producing 12 portraits referencing a life-size 3D print of the same Sitter. The works were assessed during a public exhibition, and the resulting likeness assessments were compared to portrait accuracy as measured using geometric morphometrics (statistical shape analysis). Our results are that, independently of the assessors' prior familiarity with the Sitter's face, the likeness judgements tended to be higher for less morphologically accurate portraits.
View Article and Find Full Text PDFOsmotic stress rapidly activates several phospholipid signalling pathways in the unicellular alga Chlamydomonas. In this report, we have studied the effects of salt-acclimation on growth and phospholipid signalling. Growing cells on media containing 100 mM NaCl increased their salt-tolerance but did not affect the overall phospholipid content, except that levels of phosphatidylinositol phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P] were reduced by one-third.
View Article and Find Full Text PDFWe report the results of a (2+1) resonance-enhanced multiphoton ionization (REMPI) study of the E2Sigma+(4ssigma) Rydberg state of NO-Kr. We present an assignment of the two-photon spectrum based on a simulation, and discuss it in the context of previously-reported spectra of NO-Ne and NO-Ar. In addition, we report on spectra in the region of the vNO=1 level of the E, F and H' 4s and 3d Rydberg states of NO-Rg (Rg=Ne-Kr).
View Article and Find Full Text PDFWe have collected (2 + 1) Resonance-Enhanced Multiphoton Ionization (REMPI) spectra of van der Waals complexes in which a NO molecule is attached to either CO, N(2), or both N(2) and Ar. The energy region probed corresponds to electronic transitions of uncomplexed NO(X(2)Pi) to the 4s and 3d Rydberg states, and we discuss the observed spectra in light of the expected perturbations to these electronic levels induced by complexation. We employ a model in which the van der Waals partners are assumed to reside within the Rydberg orbital, and discuss the importance of core penetration in the description of the electronic structure.
View Article and Find Full Text PDFWe have employed (2 + 1) resonance enhanced multiphoton ionization spectroscopy to investigate the 3d and 4s Rydberg states of the NO molecule when bound to the surface of Rg(x) clusters (Rg = rare gas). We observe that the spectra of the NO-Ar(x) species converge in appearance as x increases, and this is discussed in terms of two Rg atoms interacting with the NO+ core, with other Rg atoms being "outside" the Rydberg orbital. We show that the interaction of each of the Rg atoms with the NO is essentially independent for the NO-Rg2 complexes: both by comparing our spectra for Rydberg states of NO-Rg and NO-Rg2, and from the results of ab initio calculations on NO+ - Rg and NO+ - Rg2.
View Article and Find Full Text PDFWe have employed (2+1) resonance-enhanced multiphoton ionization spectroscopy to record electronic absorption spectra of NO-Rg (Rg=Ne,Ar,Kr) van der Waals complexes. The nitric oxide molecule is the chromophore, and the excitation corresponds to an electron being promoted from the 2ppi* orbital to 3dsigma, 3dpi, and 3ddelta Rydberg states. We review the ordering of the 3dlambda states of NO and use this as a basis for discussing the 3d components in the NO-Rg complexes, in terms of the interactions between the Rydberg electron, the core, and the Rg atom.
View Article and Find Full Text PDFThe molecular complexes formed between a nitric oxide molecule and the various deuterated isotopomers of the methane molecule have been studied in a supersonic jet expansion. The electronic spectrum arising from the transition corresponding to a 3s<--pi* excitation (approximately A (2)Sigma(+)<-- approximately X (2)Pi) located on the NO chromophore has been recorded employing resonance-enhanced multiphoton ionization spectroscopy, with each of CH(4), CH(3)D, CH(2)D(2), CHD(3), and CD(4) as the complexing partner. Rich spectra are obtained, whose appearance changes in a systematic way as the amount of deuteration increases.
View Article and Find Full Text PDFSmall clusters of toluene(n) (n = 1-8) were created in a supersonic expansion of toluene with argon as a carrier gas. Mass-selected resonance enhanced multiphoton ionization spectra of these clusters were recorded for each n. For the dimer, the appearance of the spectrum under warm and very cold conditions was studied.
View Article and Find Full Text PDFHyperosmotic stress induces the rapid formation of phosphatidic acid (PA) in Chlamydomonas moewusii via the activation of two signalling pathways: phospholipase D (PLD) and phospholipase C (PLC), the latter in combination with diacylglycerol kinase (DGK) (Munnik et al., 2000). A concomitant increase in cell Ca(2+) becomes manifest as deflagellation.
View Article and Find Full Text PDFPlant cells contain various phospholipase-based signaling pathways. In fact, their repertoire of phospholipase D (PLD) molecules far outnumbers those of mammalian and yeast cells. Munnik and Musgrave take a broad look at PLD function in animal, yeast, and plant cells, and suggest that a PLD-based connection between membranes and microtubules is a biological property worth considering across species.
View Article and Find Full Text PDFPolyphosphoinositides play an important role in membrane trafficking and cell signalling. In plants, two PtdInsP isomers have been described, PtdIns3P and PtdIns4P. Here we report the identification of a third, PtdIns5P.
View Article and Find Full Text PDFPlant cells are continuously exposed to environmental stresses such as hyper-osmolarity, and have to respond in order to survive. When 32P-labelled Chlamydomonas moewusii cells were challenged with NaCl, the formation of a new radiolabelled phospholipid was stimulated, which was barely detectable before stimulation. The phospholipid was identified as lyso-phosphatidic acid (LPA), and was the only lyso-phospholipid to be accumulated.
View Article and Find Full Text PDFRhizobium-secreted nodulation factors are lipochitooligosaccharides that trigger the initiation of nodule formation on host legume roots. The first visible effect is root hair deformation, but the perception and signalling mechanisms that lead to this response are still unclear. When we treated Vicia sativa seedlings with mastoparan root hairs deformed, suggesting that G proteins are involved.
View Article and Find Full Text PDFPhosphatidic acid (PA) and its phosphorylated derivative diacylglycerol pyrophosphate (DGPP) are lipid molecules that have been implicated in plant cell signaling. In this study we report the rapid but transient accumulation of PA and DGPP in suspension-cultured tomato (Lycopersicon esculentum) cells treated with the general elicitors, N,N',N",N"'-tetraacetylchitotetraose, xylanase, and the flagellin-derived peptide flg22. To determine whether PA originated from the activation of phospholipase D or from the phosphorylation of diacylglycerol (DAG) by DAG kinase, a strategy involving differential radiolabeling with [(32)P]orthophosphate was used.
View Article and Find Full Text PDFIn mammalian cells, phospholipase D (PLD) and its product phosphatidic acid (PA) are involved in a number of signalling cascades, including cell proliferation, membrane trafficking and defence responses. In plant cells a signalling role for PLD and PA is also emerging. Plants have the extra ability to phosphorylate PA to produce diacylglycerol pyrophosphate (DGPP), a newly discovered phospholipid whose formation attenuates PA levels, but which could itself be a second messenger.
View Article and Find Full Text PDFThe fatty acid and polar lipid compositions of the unicellular green alga Chlamydomonas moewusii were characterized. Since this organism is an important plant model for phospholipid-based signal transduction, interest was focused on the lipids phosphatidic acid, phosphatidylinositolphosphate and phosphatidylinositolbisphosphate. A phosphatidylinositol:phosphatidylinositolphosphate: phosphatidylinositolbisphosphate ratio of 100:1.
View Article and Find Full Text PDFMastoparan induces Ca(2+)-dependent deflagellation of the unicellular green alga Chlamydomonas moewusii Gerloff, as well as the activation of phospholipase C and the production of inositol 1,4, 5-trisphosphate (InsP(3); T. Munnik et al., 1998, Planta 207: 133-145).
View Article and Find Full Text PDFPlant growth is severely affected by hyper-osmotic salt conditions. Although a number of salt-induced genes have been isolated, the sensing and signal transduction of salt stress is little understood. We provide evidence that alfalfa cells have two osmo-sensing protein kinase pathways that are able to distinguish between moderate and extreme hyper-osmotic conditions.
View Article and Find Full Text PDFCalcium-stimulated protein kinase activity in the flagella of the green alga Chlamydomonas moewusii (Gerloff) was characterised. Using SDS-PAGE and an on-blot phosphorylation assay, a 65-kDa protein was identified as the major calcium-stimulated protein kinase. Its activity was directly stimulated by calcium, a characteristic of the calmodulin-like domain protein kinases (CDPKs).
View Article and Find Full Text PDF