The strength of the geomagnetic field has decreased rapidly over the past two centuries, coinciding with an increasing field asymmetry due to the growth of the South Atlantic Anomaly. The underlying processes causing the decrease are debated, which has led to speculation that the field is about to reverse. Here, we present a geomagnetic field model based on indirect observations over the past 9,000 y and identify potential ancient analogs.
View Article and Find Full Text PDFThe Sun sporadically produces eruptive events leading to intense fluxes of solar energetic particles (SEPs) that dramatically disrupt the near-Earth radiation environment. Such events have been directly studied for the last decades but little is known about the occurrence and magnitude of rare, extreme SEP events. Presently, a few events that produced measurable signals in cosmogenic radionuclides such as C, Be and Cl have been found.
View Article and Find Full Text PDFDuring solar storms, the Sun expels large amounts of energetic particles (SEP) that can react with the Earth's atmospheric constituents and produce cosmogenic radionuclides such as C, Be and Cl. Here we present Be and Cl data measured in ice cores from Greenland and Antarctica. The data consistently show one of the largest Be and Cl production peaks detected so far, most likely produced by an extreme SEP event that hit Earth 9125 years BP (before present, i.
View Article and Find Full Text PDFOur paper about the impacts of the Laschamps Geomagnetic Excursion 42,000 years ago has provoked considerable scientific and public interest, particularly in the so-called Adams Event associated with the initial transition of the magnetic poles. Although we welcome the opportunity to discuss our new ideas, Hawks’ assertions of misrepresentation are especially disappointing given his limited examination of the material.
View Article and Find Full Text PDFOur study on the exact timing and the potential climatic, environmental, and evolutionary consequences of the Laschamps Geomagnetic Excursion has generated the hypothesis that geomagnetism represents an unrecognized driver in environmental and evolutionary change. It is important for this hypothesis to be tested with new data, and encouragingly, none of the studies presented by Picin . undermine our model.
View Article and Find Full Text PDFRadiocarbon (C), as a consequence of its production in the atmosphere and subsequent dispersal through the carbon cycle, is a key tracer for studying the Earth system. Knowledge of past C levels improves our understanding of climate processes, the Sun, the geodynamo, and the carbon cycle. Recently updated radiocarbon calibration curves (IntCal20, SHCal20, and Marine20) provide unprecedented accuracy in our estimates of C levels back to the limit of the C technique (~55,000 years ago).
View Article and Find Full Text PDFGeophys Res Lett
June 2021
The annual C data in tree rings is an outstanding proxy for uncovering extreme solar energetic particle (SEP) events in the past. Signatures of extreme SEP events have been reported in 774/775 CE, 992/993 CE, and ∼660 BCE. Here, we report another rapid increase of C concentration in tree rings from California, Switzerland, and Finland around 5410 BCE.
View Article and Find Full Text PDFGeological archives record multiple reversals of Earth's magnetic poles, but the global impacts of these events, if any, remain unclear. Uncertain radiocarbon calibration has limited investigation of the potential effects of the last major magnetic inversion, known as the Laschamps Excursion [41 to 42 thousand years ago (ka)]. We use ancient New Zealand kauri trees () to develop a detailed record of atmospheric radiocarbon levels across the Laschamps Excursion.
View Article and Find Full Text PDFAssessing the transport of natural radionuclides in the atmosphere provides a powerful tool to study air mass circulation. Here, we investigated the seasonal atmospheric distribution of the naturally produced Be in surface air over Europe between 40° N and 68° N during the period 1975-2018. The results suggest that the inter-annual variability of Be reflects production rates of the radionuclide induced by solar modulation of cosmic rays.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2020
Northern Hemispheric high-latitude climate variations during the last glacial are expected to propagate globally in a complex way. Investigating the evolution of these variations requires a precise synchronization of the considered environmental archives. Aligning the globally common production rate variations of the cosmogenic radionuclide Be in different archives provides a tool for such synchronizations.
View Article and Find Full Text PDFThe magnitude of soil and sediment erosion and accumulation processes can profoundly affect landscape development and hamper efficient management of natural resources. Consequently, estimating the rates and causes of these processes is essential, particularly in remote regions, for prediction of changes in landform and river evolution and protection of local ecosystem. We here present the results of a soil and sediment erosion investigation in the Source Area of the Yellow River (SAYR), northeast Qinghai-Tibet Plateau based on a combined analysis of Be cosmogenic isotope and Soil and Water Assessment Tool (SWAT) simulation modelling.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2019
Recently, it has been confirmed that extreme solar proton events can lead to significantly increased atmospheric production rates of cosmogenic radionuclides. Evidence of such events is recorded in annually resolved natural archives, such as tree rings [carbon-14 (C)] and ice cores [beryllium-10 (Be), chlorine-36 (Cl)]. Here, we show evidence for an extreme solar event around 2,610 years B.
View Article and Find Full Text PDFThe Northern Hemisphere experienced dramatic changes during the last glacial, featuring vast ice sheets and abrupt climate events, while high northern latitudes during the last interglacial (Eemian) were warmer than today. Here we use high-resolution aerosol records from the Greenland NEEM ice core to reconstruct the environmental alterations in aerosol source regions accompanying these changes. Separating source and transport effects, we find strongly reduced terrestrial biogenic emissions during glacial times reflecting net loss of vegetated area in North America.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFContrasting Greenland and Antarctic temperatures during the last glacial period (115,000 to 11,650 years ago) are thought to have been driven by imbalances in the rates of formation of North Atlantic and Antarctic Deep Water (the 'bipolar seesaw'). Here we exploit a bidecadally resolved C data set obtained from New Zealand kauri (Agathis australis) to undertake high-precision alignment of key climate data sets spanning iceberg-rafted debris event Heinrich 3 and Greenland Interstadial (GI) 5.1 in the North Atlantic (~30,400 to 28,400 years ago).
View Article and Find Full Text PDFSolar variability has been hypothesized to be a major driver of North Atlantic millennial-scale climate variations through the Holocene along with orbitally induced insolation change. However, another important climate driver, volcanic forcing has generally been underestimated prior to the past 2,500 years partly owing to the lack of proper proxy temperature records. Here, we reconstruct seasonally unbiased and physically constrained Greenland Summit temperatures over the Holocene using argon and nitrogen isotopes within trapped air in a Greenland ice core (GISP2).
View Article and Find Full Text PDFThe origin of two large peaks in the atmospheric radiocarbon ((14)C) concentration at AD 774/5 and 993/4 is still debated. There is consensus, however, that these features can only be explained by an increase in the atmospheric (14)C production rate due to an extraterrestrial event. Here we provide evidence that these peaks were most likely produced by extreme solar events, based on several new annually resolved (10)Be measurements from both Arctic and Antarctic ice cores.
View Article and Find Full Text PDFVolcanic eruptions contribute to climate variability, but quantifying these contributions has been limited by inconsistencies in the timing of atmospheric volcanic aerosol loading determined from ice cores and subsequent cooling from climate proxies such as tree rings. Here we resolve these inconsistencies and show that large eruptions in the tropics and high latitudes were primary drivers of interannual-to-decadal temperature variability in the Northern Hemisphere during the past 2,500 years. Our results are based on new records of atmospheric aerosol loading developed from high-resolution, multi-parameter measurements from an array of Greenland and Antarctic ice cores as well as distinctive age markers to constrain chronologies.
View Article and Find Full Text PDFSeveral deep Greenland ice cores have been retrieved, however, capturing the Eemian period has been problematic due to stratigraphic disturbances in the ice. The new Greenland deep ice core from the NEEM site (77.45 °N, 51.
View Article and Find Full Text PDFWe present a high-resolution magnesium/calcium proxy record of Holocene sea surface temperature (SST) from off the west coast of Baja California Sur, Mexico, a region where interannual SST variability is dominated today by the influence of the El Niño-Southern Oscillation (ENSO). Temperatures were lowest during the early to middle Holocene, consistent with documented eastern equatorial Pacific cooling and numerical model simulations of orbital forcing into a La Niña-like state at that time. The early Holocene SSTs were also characterized by millennial-scale fluctuations that correlate with cosmogenic nuclide proxies of solar variability, with inferred solar minima corresponding to El Niño-like (warm) conditions, in apparent agreement with the theoretical "ocean dynamical thermostat" response of ENSO to exogenous radiative forcing.
View Article and Find Full Text PDFIt is difficult to obtain fossil data from the 10% of Earth's terrestrial surface that is covered by thick glaciers and ice sheets, and hence, knowledge of the paleoenvironments of these regions has remained limited. We show that DNA and amino acids from buried organisms can be recovered from the basal sections of deep ice cores, enabling reconstructions of past flora and fauna. We show that high-altitude southern Greenland, currently lying below more than 2 kilometers of ice, was inhabited by a diverse array of conifer trees and insects within the past million years.
View Article and Find Full Text PDFTo put global warming into context requires knowledge about past changes in solar activity and the role of the Sun in climate change. Solanki et al. propose that solar activity during recent decades was exceptionally high compared with that over the preceding 8,000 years.
View Article and Find Full Text PDFSurface winds and surface ocean hydrography in the subpolar North Atlantic appear to have been influenced by variations in solar output through the entire Holocene. The evidence comes from a close correlation between inferred changes in production rates of the cosmogenic nuclides carbon-14 and beryllium-10 and centennial to millennial time scale changes in proxies of drift ice measured in deep-sea sediment cores. A solar forcing mechanism therefore may underlie at least the Holocene segment of the North Atlantic's "1500-year" cycle.
View Article and Find Full Text PDFVariations in atmospheric radiocarbon (14C) concentrations can be attributed either to changes in the carbon cycle--through the rate of radiocarbon removal from the atmosphere--or to variations in the production rate of 14C due to changes in solar activity or the Earth's magnetic field. The production rates of 10Be and 14C vary in the same way, but whereas atmospheric radiocarbon concentrations are additionally affected by the carbon cycle, 10Be concentrations reflect production rates more directly. A record of the 10Be production-rate variations can therefore be used to separate the two influences--production rates and the carbon cycle--on radiocarbon concentrations.
View Article and Find Full Text PDF