Publications by authors named "Musazade Elshan"

Haploid induction via doubled haploid (DH) technology is pivotal for achieving true homozygosity in plant breeding; however, species lag in establishing effective haploidization methods. This review explores recent advances in DH techniques for warm-season legumes, including soybean, cowpea, pigeon pea, common bean, peanut, mung bean, and winged bean, highlighting key challenges and perspectives. While anther culture, cold pretreatment, and MS-based medium with growth regulators demonstrate potential, fully reproducible protocols remain elusive.

View Article and Find Full Text PDF

Genome editing-mediated haploid inducer systems (HISs) present a promising strategy for enhancing breeding efficiency in legume crops, which are vital for sustainable agriculture due to their nutritional benefits and ability to fix nitrogen. Traditional legume breeding is often slow and complicated by the complexity of legumes' genomes and the challenges associated with tissue culture. Recent advancements have broadened the applicability of HISs in legume crops, facilitating a reduction in the duration of the breeding cycle.

View Article and Find Full Text PDF

Emulsions play an important role in food systems by encapsulating and delivering active compounds, but maintaining their stability under various conditions can be challenging. This study explored how the concentrations of Tremella polysaccharides (TPs) (0-0.75 %) affects the structural of whey protein isolate (WPI) and the stability of their emulsions at pH 4.

View Article and Find Full Text PDF
Article Synopsis
  • Dye wastewater pollution, particularly from aniline blue, is a significant environmental issue due to its toxic properties and difficulty in treatment.
  • This study investigates the enzyme SDRz found in strain CT1, which effectively degrades aniline blue through specific enzymatic mechanisms and degradation pathways.
  • Functional tests showed that SDRz is essential for this degradation, with the enzyme demonstrating substantial activity and efficiency in breaking down aniline blue into less harmful metabolites.
View Article and Find Full Text PDF
Article Synopsis
  • Recent research has focused on how alkaline soda soil affects plant biology, particularly in rice seedlings under carbonate stress compared to saline stress.
  • The study examined the impact of different alkaline treatments on rice seedlings over various time periods, analyzing their physiological responses and hormone signaling changes.
  • Results indicated that alkaline stress was more damaging than saline stress, leading to increased organic acid accumulation and alterations in hormone signaling and metabolic pathways in the rice seedlings.
View Article and Find Full Text PDF

Tumor-infiltrating lymphocytes (TILs) are a subtype of immune cells that infiltrate and accumulate within tumors. Studies proved that TILs can be used as prognostic and predictive markers for cancer patients' responses to immunotherapy. This review explores the modern knowledge of TILs, the challenges and opportunities for utilizing TILs in cancer treatment, such as the rise of therapies under TIL circumstances, the identification of biomarkers for TIL activity, and methods used to isolate and expand TILs for therapeutic use.

View Article and Find Full Text PDF

Bacterial cellulose (BC) is a natural polymer renowned for its unique physicochemical and mechanical attributes, including notable water-holding capacity, crystallinity, and a pristine fiber network structure. While BC has broad applications spanning agriculture, industry, and medicine, its industrial utilization is hindered by production costs and yield limitations. In this study, Rhizobium sp.

View Article and Find Full Text PDF

It is well known that anthracene is a persistent organic pollutant. Among the four natural polycyclic aromatic hydrocarbons (PAHs) degrading strains, Comamonas testosterone (CT1) was selected as the strain with the highest degradation efficiency. In the present study, prokaryotic transcriptome analysis of CT1 revealed an increase in a gene that encodes tryptophane-2,3-dioxygenase (T23D) in the anthracene and erythromycin groups compared to CK.

View Article and Find Full Text PDF

Plants actively develop intricate regulatory mechanisms to counteract the harmful effects of environmental stresses. The ubiquitin-proteasome pathway, a crucial mechanism, employs E3 ligases (E3s) to facilitate the conjugation of ubiquitin to specific target substrates, effectively marking them for proteolytic degradation. E3s play critical roles in many biological processes, including phytohormonal signaling and adaptation to environmental stresses.

View Article and Find Full Text PDF

The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) is a highly conserved protein complex that regulates signaling pathways in plants under abiotic stress. We discuss the potential molecular mechanisms of CSN under abiotic stress, including oxidative stress with reactive oxygen species signaling, salt stress with jasmonic acid, gibberellic acid, and abscisic acid signaling, high-temperature stress with auxin signaling, and optical radiation with DNA damage and repair response. We conclude that CSN likely participates in affecting antioxidant biosynthesis and hormone signaling by targeting receptors, kinases, and transcription factors in response to abiotic stress, which potentially provides valuable information for engineering stress-tolerant crops.

View Article and Find Full Text PDF