Publications by authors named "Musan Zhang"

Effective antimicrobial agents are important arsenals in our perennial fight against communicable diseases, hospital-acquired and surgical site multidrug-resistant infections. In this study, we devise a strategy for the development of highly efficacious and skin compatible yet inexpensive water-soluble macromolecular antimicrobial polyionenes by employing a catalyst-free, polyaddition polymerization using commercially available monomers. A series of antimicrobial polyionenes are prepared through a simple polyaddition reaction with both polymer-forming reaction and charge installation occurring simultaneously.

View Article and Find Full Text PDF

The inherent hydrolytic reactivity of polyesters renders them excellent candidates for a variety of biomedical applications. Incorporating ionic groups further expands their potential impact, encompassing charge-dependent function such as deoxyribonucleic acid (DNA) binding, antibacterial properties, and pH-responsiveness. Catalyst-free and solvent-free polycondensation of a bromomethyl imidazolium-containing (BrMeIm) diol with neopentylglycol (NPG) and adipic acid (AA) afforded novel charged copolyesters with pendant imidazolium sites.

View Article and Find Full Text PDF

Hemiaminal poly(ethylene glycol) (PEG)-based organogels are formulated in polymerizable solvents. The dynamic-covalent nature of the solvent-H-bonded hemiaminal crosslinks, together with the modification of the crosslinking density of the organogels allows for temperature-dependent viscoelastic control. The shape of uncured gels can be permanently retained by templated UV-curing of the solvent, offering great promise for complex manufacturing, printing, sealants, and materials repair.

View Article and Find Full Text PDF

Photopolymerization coupled with mask projection microstereolithography successfully generated various 3D printed phosphonium polymerized ionic liquids (PILs) with low UV light intensity requirements and high digital resolution. Varying phosphonium monomer concentration, diacrylate cross-linking comonomer, and display images enabled precise 3D design and polymeric properties. The resulting cross-linked phosphonium PIL objects exhibited a synergy of high thermal stability, tunable glass transition temperature, optical clarity, and ion conductivity, which are collectively well-suited for emerging electro-active membrane technologies.

View Article and Find Full Text PDF