Publications by authors named "Musah Alhassan"

Ovarian cancer is a serious sickness for elderly women. According to data, it is the seventh leading cause of death in women as well as the fifth most frequent disease worldwide. Many researchers classified ovarian cancer using Artificial Neural Networks (ANNs).

View Article and Find Full Text PDF

The use of artificial intelligence (AI) and the Internet of Things (IoT), which is a developing technology in medical applications that assists physicians in making more informed decisions regarding patients' courses of treatment, has become increasingly widespread in recent years in the field of healthcare. On the other hand, the number of PET scans that are being performed is rising, and radiologists are getting significantly overworked as a result. As a direct result of this, a novel approach that goes by the name "computer-aided diagnostics" is now being investigated as a potential method for reducing the tremendous workloads.

View Article and Find Full Text PDF
Article Synopsis
  • People are using visual media (like images, videos, and GIFs) on social media to express their opinions, leading to new research in sentiment analysis that combines visual and textual data.
  • Researchers aim to understand social interactions and predict opinions through image and text analysis, highlighting the importance of integrating these two forms of media.
  • The proposed deep learning-based intermodal (DLBI) analysis method demonstrates superior accuracy and efficiency in processing opinions by linking text and images, and ongoing simulations are validating its effectiveness compared to existing models.
View Article and Find Full Text PDF

People have always relied on some form of instrument to assist them to get to their destination, from hand-drawn maps and compasses to technology-based navigation systems. Many individuals these days have a smartphone with them at all times, making it a common part of their routine. Using GPS technology, these cellphones offer applications such as Google Maps that let people find their way around the outside world.

View Article and Find Full Text PDF

While the world continues to grapple with the devastating effects of the SARS-nCoV-2 virus, different scientific groups, including researchers from different parts of the world, are trying to collaborate to discover solutions to prevent the spread of the COVID-19 virus permanently. Henceforth, the current study envisions the analysis of predictive models that employ machine learning techniques and mathematical modeling to mitigate the spread of COVID-19. A systematic literature review (SLR) has been conducted, wherein a search into different databases, viz.

View Article and Find Full Text PDF

A large amount of patient information has been gathered in Electronic Health Records (EHRs) concerning their conditions. An EHR, as an unstructured text document, serves to maintain health by identifying, treating, and curing illnesses. In this research, the technical complexities in extracting the clinical text data are removed by using machine learning and natural language processing techniques, in which an unstructured clinical text data with low data quality is recognized by Halve Progression, which uses Medical-Fissure Algorithm which provides better data quality and makes diagnosis easier by using a cross-validation approach.

View Article and Find Full Text PDF

Epileptic patients suffer from an epileptic brain seizure caused by the temporary and unpredicted electrical interruption. Conventionally, the electroencephalogram (EEG) signals are manually studied by medical practitioners as it records the electrical activities from the brain. This technique consumes a lot of time, and the outputs are unreliable.

View Article and Find Full Text PDF