The future of molecular-level therapy, efficient medical diagnosis, and drug delivery relies on the effective theragnostic function which can be achieved by the synergistic effect of fluorescent carbon dots (FCDs) liposomes (L) and nanoliposomes. FCDs act as the excipient navigation agent while liposomes play the role of the problem-solving agent, thus the term "theragnostic" would describe the effect of LFCDs properly. Liposomes and FCDs share some excellent at-tributes such as being nontoxic and biodegradable and they can represent a potent delivery system for pharmaceutical compounds.
View Article and Find Full Text PDFThe twenty-first century is witnessing an explosion in global population, environmental changes, agricultural land disintegration, hunger, and geopolitical instabilities. It is difficult to manage these conditions or standardize improvement systems without thinking of the three main elements or subsystems that are necessary for any meaningful development-namely water (W), energy (E), and food (F). These key elements form what is globally agreed upon as the "WEF Nexus.
View Article and Find Full Text PDFIn this study, luminescent bio-adsorbent nitrogen-doped carbon dots (N-CDs) was produced and applied for the removal and detection of Hg (II) from aqueous media. N-CDs were synthesized from oil palm empty fruit bunch carboxymethylcellulose (CMC) and urea. According to several analytical techniques used, the obtained N-CDs display graphitic core with an average size of 4.
View Article and Find Full Text PDFThe valorization of cellulose-based waste is of prime significance to green chemistry. However, the full exploitation of these lignocellulosic compounds to produce highly luminescent nanoparticles under mild conditions has not yet been achieved. In this context, we convert low-quality waste into value-added nanomaterials for the removal of Cu(ii) from wastewater.
View Article and Find Full Text PDFThe need for the sensing of environmental pollutants cannot be overemphasized in the twenty-first century. Herein, a sensor has been developed for the sensitive and selective detection of copper (Cu), lead (Pb) and cadmium (Cd) as major heavy metals polluting water environment. A screen-printed carbon electrode (SPCE) modified by fluorescent carbon dots (CDs) and gold nanoparticles (AuNPs) was successfully fabricated for sensing Cu, Pb and Cd.
View Article and Find Full Text PDFThe current research mainly focuses on transforming low-quality waste into value-added nanomaterials and investigating various ways of utilising them. The hydrothermal preparation of highly fluorescent N-doped carbon dots (N-CDs) was obtained from the carboxymethylcellulose (CMC) of oil palm empty fruit bunches and linear-structured polyethyleneimines (LPEI). Transmission electron microscopy (TEM) analysis showed that the obtained N-CDs had an average size of 3.
View Article and Find Full Text PDF