Publications by authors named "Musa Mammadov"

Machine learning techniques have shown superior predictive power, among which Bayesian network classifiers (BNCs) have remained of great interest due to its capacity to demonstrate complex dependence relationships. Most traditional BNCs tend to build only one model to fit training instances by analyzing independence between attributes using conditional mutual information. However, for different class labels, the conditional dependence relationships may be different rather than invariant when attributes take different values, which may result in classification bias.

View Article and Find Full Text PDF

Over recent decades, the rapid growth in data makes ever more urgent the quest for highly scalable Bayesian networks that have better classification performance and expressivity (that is, capacity to respectively describe dependence relationships between attributes in different situations). To reduce the search space of possible attribute orders, -dependence Bayesian classifier (KDB) simply applies mutual information to sort attributes. This sorting strategy is very efficient but it neglects the conditional dependencies between attributes and is sub-optimal.

View Article and Find Full Text PDF

Bayesian network classifiers (BNCs) have demonstrated competitive classification performance in a variety of real-world applications. A highly scalable BNC with high expressivity is extremely desirable. This paper proposes Redundant Dependence Elimination (RDE) for improving the classification performance and expressivity of k-dependence Bayesian classifier (KDB).

View Article and Find Full Text PDF

This paper investigates the dynamics of Ebola virus transmission in West Africa during 2014. The reproduction numbers for the total period of epidemic and for different consequent time intervals are estimated based on a simple linear model. It contains one major parameter - the average infectious period that defines the dynamics of epidemics.

View Article and Find Full Text PDF