Electrochemical water splitting required efficient electrocatalysts to produce clean hydrogen fuel. Here, we adopted greenway coprecipitation (GC) method to synthesize conducting polymer (CP) nanotunnel network affixed with luminal-abluminal CoNi hydroxides (GC-CoNiCP), namely, GC-CoNiCP, GC-CoNiCP, and GC-CoNiCP. The active catalyst, GC-CoNiCP/GC, has low oxygen evolution reaction (OER) overpotential (307 mV) and a smaller Tafel slope (47 mV dec) than IrO (125 mV dec).
View Article and Find Full Text PDFWater electrolysis is a key factor to generate mobile and sustainable energy sources for H production. Cobalt-based Prussian Blue analogues encompassed with polymer support electrocatalysts CoPBA@PANI (CoPBA@PANI-100, CoPBA@PANI-200, and CoPBA@PANI-300) have been synthesized and characterized. The well-designed CoPBA@PANI-200/GC shows a low overpotential (η) of 301 mV with a small Tafel slope (56 mV dec), comapred to that of IrO (348 mV ; 98 mV dec) for OER.
View Article and Find Full Text PDF