Accurate estimation of coastal and in-land water quality parameters is important for managing water resources and meeting the demand of sustainable development goals. The water quality monitoring based on discrete water sample analysis is limited to specific locations and becomes less effective to offer a synoptic view of the water quality variability at different spatial and temporal scales. The optical remote sensing techniques have proved their ability to provide a comprehensive and synoptic view of water quality parameters.
View Article and Find Full Text PDFAccurate retrieval of the water-leaving radiance from hyperspectral/multispectral remote sensing data in optically complex inland and coastal waters remains a challenge due to the excessive concentrations of phytoplankton and suspended sediments as well as the inaccurate estimation and extrapolation of aerosol radiance over the visible wavelengths. In recent years, reasonably accurate methods were established to estimate the enhanced contribution of suspended sediments in the near-infrared (NIR) and shortwave infrared (SWIR) bands to enable atmospheric correction in coastal waters, but solutions to derive the dominant phytoplankton contribution in the NIR and SWIR bands are less generalizable and subject to large uncertainties in the remotely-derived water color products. These issues are not only associated with the standard atmospheric correction algorithm in the SeaDAS processing system but with the non-traditional algorithms such as POLYMER (POLYnomial-based approach established for the atmospheric correction of MERIS data).
View Article and Find Full Text PDFIntroduction Dysphagia is one of the general symptoms encountered in clinical practice. The impact of dysphagia can be devastating to a patient's physical condition and quality of life (QOL). To evaluate the QOL of patients with dysphagia there are numerous self-reported questionnaires.
View Article and Find Full Text PDF