Publications by authors named "Murugan Kannan"

Lysine specific demethylase 1 (LSD1) and HDAC6 are epigenetic proteins associated with several diseases, including cancer and combined inhibition of these proteins could be highly beneficial in treating some cancers such as AML, MM and solid tumors. Multiple myeloma (MM) is a challenging cancer with fast relapse rate where novel treatment options are the need of the hour. We have designed and developed novel, LSD1 and HDAC6 selective dual inhibitors to target MM.

View Article and Find Full Text PDF

Nitroarenes are less preferred in drug discovery due to their potential to be mutagenic. However, several nitroarenes were shown to be promising antitubercular agents with specific modes of action, namely, nitroimidazoles and benzothiazinones. The nitro group in these compounds is activated through different mechanisms, both enzymatic and non-enzymatic, in mycobacteria prior to binding to the target of interest.

View Article and Find Full Text PDF

We report the discovery of benzothiazoles, a novel anti-mycobacterial series, identified from a whole cell based screening campaign. Benzothiazoles exert their bactericidal activity against Mycobacterium tuberculosis (Mtb) through potent inhibition of decaprenylphosphoryl-β-d-ribose 2'-oxidase (DprE1), the key enzyme involved in arabinogalactan synthesis. Specific target linkage and mode of binding were established using co-crystallization and protein mass spectrometry studies.

View Article and Find Full Text PDF

The widespread emergence of Plasmodium falciparum (Pf) strains resistant to frontline agents has fuelled the search for fast-acting agents with novel mechanism of action. Here, we report the discovery and optimization of novel antimalarial compounds, the triaminopyrimidines (TAPs), which emerged from a phenotypic screen against the blood stages of Pf. The clinical candidate (compound 12) is efficacious in a mouse model of Pf malaria with an ED99 <30 mg kg(-1) and displays good in vivo safety margins in guinea pigs and rats.

View Article and Find Full Text PDF

In the search of novel chemotherapeutic agents for emerging drug resistant parasites, the hybridization approaches have successfully emerged as an efficient tool in malarial chemotherapy. Herein, a rational design and synthesis of novel 8-aminoquinoline and pyrazolopyrimidine hybrids and their antimalarial activity against wild type Plasmodium falciparum (Pf_NF54) and resistant strain (Pf_K1) is reported. The medicinal chemistry approach to expand the scope of this series resulted in an identification of potent compounds with nanomolar potency (best IC50 5-10nM).

View Article and Find Full Text PDF

M. tuberculosis thymidylate kinase (Mtb TMK) has been shown in vitro to be an essential enzyme in DNA synthesis. In order to identify novel leads for Mtb TMK, we performed a high throughput biochemical screen and an NMR based fragment screen through which we discovered two novel classes of inhibitors, 3-cyanopyridones and 1,6-naphthyridin-2-ones, respectively.

View Article and Find Full Text PDF

InhA is a well validated Mycobacterium tuberculosis (Mtb) target as evidenced by the clinical success of isoniazid. Translating enzyme inhibition to bacterial cidality by targeting the fatty acid substrate site of InhA remains a daunting challenge. The recent disclosure of a methyl-thiazole series demonstrates that bacterial cidality can be achieved with potent enzyme inhibition and appropriate physicochemical properties.

View Article and Find Full Text PDF

Aminopyrazinamides originated from a high throughput screen targeting the Mycobacterium smegmatis (Msm) GyrB ATPase. This series displays chemical tractability, robust structure-activity relationship, and potent antitubercular activity. The crystal structure of Msm GyrB in complex with one of the aminopyrazinamides revealed promising attributes of specificity against other broad spectrum pathogens and selectivity against eukaryotic kinases due to novel interactions at hydrophobic pocket, unlike other known GyrB inhibitors.

View Article and Find Full Text PDF