The lysine connection with phosphatidylglycerol (PG) alters the M. tuberculosis(Mtb) surface charge, and consequently it may decrease the bacterial vulnerability to antimicrobial action of the immune cells. The aim of the study was to assess the significance of PG lysinylation in the Mtb interactions with mononuclear phagocytes.
View Article and Find Full Text PDFAcidic phospholipids have been shown to promote dissociation of bound nucleotides from Mycobacterium tuberculosis DnaA (DnaA(TB)) purified under denaturing conditions [Yamamoto et al., (2002) Modulation of Mycobacterium tuberculosis DnaA protein-adenine-nucleotide interactions by acidic phospholipids. Biochem.
View Article and Find Full Text PDFThe genetic factors responsible for the regulation of cell division in Mycobacterium tuberculosis are largely unknown. We showed that exposure of M. tuberculosis to DNA damaging agents, or to cephalexin, or growth of M.
View Article and Find Full Text PDFPaired two-component regulatory systems consisting of a sensor kinase and a response regulator are the major means by which bacteria sense and respond to different stimuli. The role of essential response regulator, MtrA, in Mycobacterium tuberculosis proliferation is unknown. We showed that elevating the intracellular levels of MtrA prevented M.
View Article and Find Full Text PDFOligomerization of the initiator protein, DnaA, on the origin of replication (oriC) is crucial for initiation of DNA replication. Studies in Escherichia coli (Gram-negative) have revealed that binding of DnaA to ATP, but not hydrolysis of ATP, is sufficient to promote DnaA binding, oligomerization and DNA strand separation. To begin understanding the initial events involved in the initiation of DNA replication in Mycobacterium tuberculosis (Gram-positive), we investigated interactions of M.
View Article and Find Full Text PDFFtsZ, a bacterial homolog of tubulin, forms a structural element called the FtsZ ring (Z ring) at the predivisional midcell site and sets up a scaffold for the assembly of other cell division proteins. The genetic aspects of FtsZ-catalyzed cell division and its assembly dynamics in Mycobacterium tuberculosis are unknown. Here, with an M.
View Article and Find Full Text PDFWe provide genetic evidence to show that the Mycobacterium tuberculosis FtsZ and FtsW proteins interact, and that these interactions are biologically relevant. Furthermore, we show by fluorescence microscopy that Mycobacterium smegmatis FtsW is part of its septasomal complex and colocalizes with FtsZ to the midcell sites. Colocalization experiments reveal that approximately 27% of the cells with septal Z-rings contain FtsW whereas 93% of the cells with FtsW bands are associated with FtsZ indicating that FtsW is late recruit to the septum, as in Escherichia coli.
View Article and Find Full Text PDFMicrobiology (Reading)
December 2002
To begin to understand the role of Mycobacterium smegmatis dnaA in DNA replication, the dnaA gene was characterized at the genetic level. Western analyses revealed that DnaA accounts for approximately 0.18% of the total cellular protein during both the active and stationary growth periods.
View Article and Find Full Text PDFThe origin of replication (oriC) region in some clinical strains of Mycobacterium tuberculosis is a hot spot for IS6110 elements. To understand how clinical strains with insertions in oriC can replicate their DNA, we characterized the oriC regions of some clinical strains. Using a plasmid-based oriC-dependent replication assay, we showed that IS6110 insertions that disrupted the DnaA box sequence CCGTTCACA abolished oriC activity in M.
View Article and Find Full Text PDFThe ftsZ gene of Mycobacterium tuberculosis H37Rv has been characterized as the first step in determining the molecular events involved in the cell division process in mycobacteria. Western analysis revealed that intracellular levels of FtsZ are growth phase dependent in both M. tuberculosis and Mycobacterium smegmatis.
View Article and Find Full Text PDFThe biochemical aspects of the initiation of DNA replication in Mycobacterium tuberculosis are unknown. To understand this process, we overproduced, purified and characterized the recombinant M. tuberculosis DnaA protein.
View Article and Find Full Text PDF