In this study, we demonstrate that elastic strain applied to a current collector can influence the overall thermodynamic and kinetic picture of sodium metal electrodeposition and hence the performance of a sodium metal battery. To controllably study the role of strain in electrochemical performance, we utilize NiTi foil as a stable current collector, nucleation interface, and superelastic material. Our findings demonstrate that a locked-in elastic tensile strain near 8% results in 40 mV lower onset potential for sodium electrodeposition, 19% decrease in charge transfer resistance, and 20% lower cumulative sodium loss, among other effects.
View Article and Find Full Text PDFThis effort demonstrates the development of a novel, graphene oxide nanoscale thermite composite with thermally tunable microwave ignitability. A model thermite system containing nanoscale aluminum and nanoscale iron(II) oxide in a stoichiometric ratio (30/70 wt %) was combined with sheets of graphene oxide (GO) or reduced graphene oxide (rGO) using an immiscible two-fluid sonication and tape casting process. The samples were microwave irradiated within a single-mode resonant microwave cavity to determine the microwave ignition delay.
View Article and Find Full Text PDFHere, we demonstrate the utilization of biocompatible Prussian blue (PB) active coatings onto polyester-carbon nanotube (CNT) threads to enable a fiber-based platform for both power harvesting and continuous motion sensing. First, we show experimental evidence supporting that the mechanistic power generating mechanical-electrochemical coupling in an electrochemical generator (ECG) is best achieved with K-ion insertion, in contrast to the expected preference for Li-ion insertion for batteries. We then construct KPB fibers and demonstrate power generation in an ECG device up to 3.
View Article and Find Full Text PDF