Publications by authors named "Murrin L"

People diagnosed with depression also tend to have a co-morbid nicotine addiction. Thus, there is interest in whether medications used to treat depression alter the effects of nicotine. This study assessed whether the antidepressant drugs citalopram, imipramine, and reboxetine, with differing specificity for the serotonin and norepinephrine transporter, altered responding controlled by the conditional stimulus (CS) effects of nicotine.

View Article and Find Full Text PDF

Alpha-2 adrenergic receptors (A2AR) regulate multiple brain functions and are enriched in developing brain. Studies demonstrate norepinephrine (NE) plays a role in regulating brain maturation, suggesting it is important in A2AR development. To investigate this we employed models of NE absence and excess during brain development.

View Article and Find Full Text PDF

Background: Methamphetamine (METH), an addictive psycho-stimulant drug with euphoric effect is known to cause neurotoxicity due to oxidative stress, dopamine accumulation and glial cell activation. Here we hypothesized that METH-induced interference of glucose uptake and transport at the endothelium can disrupt the energy requirement of the blood-brain barrier (BBB) function and integrity. We undertake this study because there is no report of METH effects on glucose uptake and transport across the blood-brain barrier (BBB) to date.

View Article and Find Full Text PDF

Chronic HIV-1 infection commonly affects behavioral, cognitive, and motor functions in the infected human host and is commonly referred to as HIV-1-associated neurocognitive disorders (HAND). This occurs, in measure, as a consequence of ingress of leukocytes into brain perivascular regions. Such cells facilitate viral infection and disease by eliciting blood-brain barrier and neuronal network dysfunctions.

View Article and Find Full Text PDF

Mu opioid receptors (MOP) are transducers of the pharmacological effects of many opioid drugs, including analgesia and tolerance/dependence. Previously, we observed increased MOP signaling during postnatal development that was not associated with increased MOP or G protein expression. A yeast two-hybrid screen of a human brain cDNA library using the MOP C-terminus as bait identified RanBPM as a potential MOP-interacting protein.

View Article and Find Full Text PDF

Methamphetamine (METH) induces neurodegeneration through damage and apoptosis of dopaminergic nerve terminals and striatal cells, presumably via cross-talk between the endoplasmic reticulum and mitochondria-dependent death cascades. However, the effects of METH on neural progenitor cells (NPC), an important reservoir for replacing neurons and glia during development and injury, remain elusive. Using a rat hippocampal NPC (rhNPC) culture, we characterized the METH-induced mitochondrial fragmentation, apoptosis, and its related signaling mechanism through immunocytochemistry, flow cytometry, and Western blotting.

View Article and Find Full Text PDF

Activity regulated cytoskeletal protein (Arc), c-fos and zif268 are immediate early genes (IEGs) important for adult brain plasticity. We examined developmental expression of these IEGs and the effect of neonatal noradrenergic lesion on their expression in developing and mature brain. N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4), a specific noradrenergic neurotoxin, was administered to rats on postnatal day (PND) 3 and in situ hybridization was used to assay Arc, c-fos and zif268 mRNA on PND 13, 25 and 60.

View Article and Find Full Text PDF

We review the literature for Ran Binding Protein in the Microtubule-Organizing Center (RanBPM; RanBP9), a 90-kDa protein that possesses many characteristics of a scaffolding protein, including protein-interaction motifs, a cytoskeletal-binding domain, and multiple canonical docking sites for signaling intermediates. We focus on studies that have examined functional interactions between RanBPM and other proteins. These studies suggest that RanBPM provides a platform for the interaction of a variety of signaling proteins, including cell surface receptors, nuclear receptors, nuclear transcription factors, and cytosolic kinases.

View Article and Find Full Text PDF

Our understanding of the development of neurotransmitter systems in the central nervous system has increased greatly over the past three decades and it has become apparent that drug effects on the developing nervous system may differ considerably from effects on the mature nervous system. Recently it has become clear there are significant differences in the effectiveness of antidepressant drug classes in children and adolescents compared to adults. Whereas the selective serotonin reuptake inhibitors are effective in treating all ages from children to adults, the tricyclic antidepressants, many of which inhibit norepinephrine reuptake, have been shown to be ineffective in treating children and adolescents even though they are effective in adults.

View Article and Find Full Text PDF

The biosynthesis of norepinephrine occurs through a multi-enzymatic pathway that includes the enzyme dopamine-beta-hydroxylase (DBH). Mice with a homozygous deletion of DBH (Dbh-/-) have a selective and complete absence of norepinephrine. The purpose of this study was to assess the expression of alpha-1, alpha-2 and beta adrenergic receptors (alpha1-AR, alpha2-AR and beta-AR) in the postnatal absence of norepinephrine by comparing noradrenergic receptors in Dbh-/- mice with those in Dbh heterozygotes (Dbh+/-), which have normal levels of norepinephrine throughout life.

View Article and Find Full Text PDF

Organophosphorus esters (OP) are highly toxic chemicals used as pesticides and nerve agents. Their acute toxicity is attributed to inhibition of acetylcholinesterase (AChE, EC 3.1.

View Article and Find Full Text PDF

The purpose of this work was to develop a gene delivery system that expressed acetylcholinesterase (AChE) for prolonged periods. An adeno-associated virus (AAV) expressing human AChE was constructed by co-transfecting three plasmids into HEK 293T cells. The purified vector expressed 0.

View Article and Find Full Text PDF

Norepinephrine is a neurotransmitter with peripheral and central actions mediated by alpha-1, alpha-2, and beta-adrenergic receptors. In this paper, we report an expression of alpha-2 adrenergic receptors in developing white matter tracts as revealed by [(3)H]RX821002 autoradiography. In rats, these receptors are present in the corpus callosum and anterior commissure at gestational day 20.

View Article and Find Full Text PDF

Mu opioid receptors are densely expressed within rat striatum and are concentrated in anatomically discrete patches called striosomes. The density of striosomal mu receptors remains relatively constant during postnatal development, but little is known about their functional maturation. We examined the extent of G protein coupling by mu opioid receptors in rat brain during development, focusing on striosomes within the striatum because of receptor density.

View Article and Find Full Text PDF

The norepinephrine transporter (NET) plays a major role in regulating the actions of norepinephrine by removing norepinephrine from the synapse. Many studies suggest norepinephrine plays an important role in regulating development of the CNS, pointing to NET as an important factor in this process. We examined the ontogeny of NET expression in rat brain at 5, 10, 15, 20 and 25 days postnatally (PND) and in adults, using quantitative autoradiography with [3H]nisoxetine as ligand.

View Article and Find Full Text PDF

During development norepinephrine plays a role in determining the morphologic organization of the CNS and the density and future responsiveness of adrenergic receptors. alpha-2 Adrenergic receptors, one of three adrenergic receptor types, regulate important adult CNS functions and may have a distinct role during development. We examined alpha-2 receptor distribution and density in the rat brain at postnatal days 1, 5, 10, 15, 21, 28 and in adults using the antagonist [(3)H]RX821002 for autoradiography.

View Article and Find Full Text PDF

The receptor-stimulated accumulation of [35S]GTPgammaS provides a measure of functional coupling of G proteins with receptors. Sensitivity for autoradiographic visualization of [35S]GTPgammaS binding was improved two- to threefold in rat brain sections by optimizing assay conditions. Non-specific (NSB), basal and agonist-stimulated [35S]GTPgammaS binding were measured, using methadone, 5-carboxamidotryptamine and epinephrine for mu-opiate receptors, 5-HT(1A) receptors and alpha(2)-adrenoceptors.

View Article and Find Full Text PDF

A method is presented for monitoring the coupling of the alpha(2)-adrenoceptor, as well as other receptors, to their G proteins using the GTP-induced shift in agonist affinity states. In tissue sections GTP, but not ATP, induces a robust decrease in agonist affinity of greater than 100-fold, which is much larger than previously found in membrane preparations. A sensitive and easy procedure to monitor the extent of coupling is to compare the amount of [(3)H]RX821002 binding remaining in the presence of 100 nM brimonidine in the absence and presence of 100 microM GTP.

View Article and Find Full Text PDF

Receptor analysis using the radioligand binding saturation method in situations requiring a large concentration range of the ligand is theoretically straightforward but in practice can be relatively difficult. In this paper we review three approaches for carrying out such experiments and assess the strengths and weaknesses of each. The three are two saturation experiments, two homologous competition experiments, and the mixed homologous saturation experiment.

View Article and Find Full Text PDF

Agonist-stimulated [35S]GTP gamma S binding by alpha(2)-adrenoceptors was examined in rat brain by autoradiography. Epinephrine, norepinephrine, dexmedetomidine and brimonidine stimulated [35S]GTP gamma S binding in a dose-dependent manner. Agonist-stimulated binding was blocked by the specific alpha(2)-adrenoceptor antagonist (1, 4-benzodioxan-2-methoxy-2-yl)-2-imidazoline hydrochloride (RX821002).

View Article and Find Full Text PDF

Several alpha(2)-adrenoceptor antagonists have inverse agonist properties in cell culture systems, usually expressing high levels or a constitutively active form of alpha(2)-adrenoceptors. In characterizing the binding of alpha(2)-adrenoceptor agonists to rat brain tissue sections, we found that conditions known to alter agonist affinity for these receptors, particularly the addition of 100 microM GTP, altered the binding of the alpha(2)-adrenoceptor antagonist, [3H](1,4-benzodioxan-2-methoxy-2-yl)-2-imidazoline hydrochloride (RX821002). In further studies, we found that under our conditions [3H]RX821002 demonstrates inverse agonist properties at alpha(2)-adrenoceptors.

View Article and Find Full Text PDF

Mice with altered alpha(2)-adrenergic receptor genes have become important tools in elucidating the subtype-specific functions of the three alpha(2)-adrenergic receptor subtypes because of the lack of sufficiently subtype-selective pharmacological agents. Mice with a deletion (knockout) of the alpha(2A)-, alpha(2B)-, or alpha(2C)-gene as well as a point mutation of the alpha(2A)-gene (alpha(2A)-D79N) and a 3-fold overexpression of the alpha(2C)-gene have been generated. Studies with these mice indicate that most of the classical functions mediated by the alpha(2)-adrenergic receptor, such as hypotension, sedation, analgesia, hypothermia, and anesthetic-sparing effect, are mediated primarily by the alpha(2A)-subtype.

View Article and Find Full Text PDF

During postnatal development, alpha-2 adrenergic receptors (A2AR) change in both density and distribution. In forebrain, receptor density increases about 4-fold over neonatal levels, reaching adult levels before postnatal day (P) 28, whereas in hindbrain, including cerebellum, there is a decrease in overall receptor density. We examined the coupling of A2AR to G proteins using agonist-stimulated [35S]GTPgammaS binding as a functional assay.

View Article and Find Full Text PDF

The dopamine transporter mediates the reinforcing effects of cocaine, thus playing a central role in human cocaine addiction, and perhaps providing the mechanism for inducing the effects of prenatal cocaine exposure. This possibility has stimulated growing interest in the normal and abnormal development of this transporter. [3H]WIN 35,428 is a cocaine analog that is useful for studying the distribution and density of the dopamine transporter in striatum and other brain regions.

View Article and Find Full Text PDF

The dopamine transporter performs an important role in regulating neurochemical transmission at dopaminergic synapses, as well as dopamine synthetic activity in dopaminergic neurons. Certain drugs and toxins exert effects at the transporter, especially cocaine, a common drug of abuse. We studied the development of these sites in the rat at postnatal ages day 0, 5, 10, 15, 21 and adult using quantitative autoradiography with the cocaine analogue [125I]RTI-55.

View Article and Find Full Text PDF