Publications by authors named "Murray Shanahan"

As dialogue agents become increasingly human-like in their performance, we must develop effective ways to describe their behaviour in high-level terms without falling into the trap of anthropomorphism. Here we foreground the concept of role play. Casting dialogue-agent behaviour in terms of role play allows us to draw on familiar folk psychological terms, without ascribing human characteristics to language models that they in fact lack.

View Article and Find Full Text PDF

Artificial Intelligence is making rapid and remarkable progress in the development of more sophisticated and powerful systems. However, the acknowledgement of several problems with modern machine learning approaches has prompted a shift in AI benchmarking away from task-oriented testing (such as Chess and Go) towards -oriented testing, in which AI systems are tested on their capacity to solve certain of novel problems. The Animal-AI Environment is one such benchmark which aims to apply the ability-oriented testing used in comparative psychology to AI systems.

View Article and Find Full Text PDF

Human perception and experience of time are strongly influenced by ongoing stimulation, memory of past experiences, and required task context. When paying attention to time, time experience seems to expand; when distracted, it seems to contract. When considering time based on memory, the experience may be different than what is in the moment, exemplified by sayings like "time flies when you're having fun.

View Article and Find Full Text PDF

The apparent dichotomy between information-processing and dynamical approaches to complexity science forces researchers to choose between two diverging sets of tools and explanations, creating conflict and often hindering scientific progress. Nonetheless, given the shared theoretical goals between both approaches, it is reasonable to conjecture the existence of underlying common signatures that capture interesting behavior in both dynamical and information-processing systems. Here, we argue that a pragmatic use of integrated information theory (IIT), originally conceived in theoretical neuroscience, can provide a potential unifying framework to study complexity in general multivariate systems.

View Article and Find Full Text PDF

The problem of common sense remains a major obstacle to progress in artificial intelligence. Here, we argue that common sense in humans is founded on a set of basic capacities that are possessed by many other animals, capacities pertaining to the understanding of objects, space, and causality. The field of animal cognition has developed numerous experimental protocols for studying these capacities and, thanks to progress in deep reinforcement learning (RL), it is now possible to apply these methods directly to evaluate RL agents in 3D environments.

View Article and Find Full Text PDF

One of the main concerns of deep reinforcement learning (DRL) is the data inefficiency problem, which stems both from an inability to fully utilize data acquired and from naive exploration strategies. In order to alleviate these problems, we propose a DRL algorithm that aims to improve data efficiency via both the utilization of unrewarded experiences and the exploration strategy by combining ideas from unsupervised auxiliary tasks, intrinsic motivation, and hierarchical reinforcement learning (HRL). Our method is based on a simple HRL architecture with a metacontroller and a subcontroller.

View Article and Find Full Text PDF

Despite being a fundamental dimension of experience, how the human brain generates the perception of time remains unknown. Here, we provide a novel explanation for how human time perception might be accomplished, based on non-temporal perceptual classification processes. To demonstrate this proposal, we build an artificial neural system centred on a feed-forward image classification network, functionally similar to human visual processing.

View Article and Find Full Text PDF

Although brain oscillations involving the basal ganglia (BG) have been the target of extensive research, the main focus lies disproportionally on oscillations generated within the BG circuit rather than other sources, such as cortical areas. We remedy this here by investigating the influence of various cortical frequency bands on the intrinsic effective connectivity of the BG, as well as the role of the latter in regulating cortical behaviour. To do this, we construct a detailed neural model of the complete BG circuit based on fine-tuned spiking neurons, with both electrical and chemical synapses as well as short-term plasticity between structures.

View Article and Find Full Text PDF

Continuous-time recurrent neural networks are widely used as models of neural dynamics and also have applications in machine learning. But their dynamics are not yet well understood, especially when they are driven by external stimuli. In this article, we study the response of stable and unstable networks to different harmonically oscillating stimuli by varying a parameter , the ratio between the timescale of the network and the stimulus, and use the dimensionality of the network's attractor as an estimate of the complexity of this response.

View Article and Find Full Text PDF

Current theory proposes that healthy neural dynamics operate in a metastable regime, where brain regions interact to simultaneously maximize integration and segregation. Metastability may confer important behavioral properties, such as cognitive flexibility. It is increasingly recognized that neural dynamics are constrained by the underlying structural connections between brain regions.

View Article and Find Full Text PDF

At the macroscopic scale, the human brain can be described as a complex network of white matter tracts integrating grey matter assemblies - the human connectome. The structure of the connectome, which is often described using graph theoretic approaches, can be used to model macroscopic brain function at low computational cost. Here, we use the Kuramoto model of coupled oscillators with time-delays, calibrated with respect to empirical functional MRI data, to study the relation between the structure of the connectome and two aspects of functional brain dynamics - synchrony, a measure of general coherence, and metastability, a measure of dynamical flexibility.

View Article and Find Full Text PDF

Entropy is a dimensionless quantity that is used for measuring uncertainty about the state of a system but it can also imply physical qualities, where high entropy is synonymous with high disorder. Entropy is applied here in the context of states of consciousness and their associated neurodynamics, with a particular focus on the psychedelic state. The psychedelic state is considered an exemplar of a primitive or primary state of consciousness that preceded the development of modern, adult, human, normal waking consciousness.

View Article and Find Full Text PDF

Understanding how dynamic changes in brain activity control behavior is a major challenge of cognitive neuroscience. Here, we consider the brain as a complex dynamic system and define two measures of brain dynamics: the synchrony of brain activity, measured by the spatial coherence of the BOLD signal across regions of the brain; and metastability, which we define as the extent to which synchrony varies over time. We investigate the relationship among brain network activity, metastability, and cognitive state in humans, testing the hypothesis that global metastability is "tuned" by network interactions.

View Article and Find Full Text PDF

Many species of birds, including pigeons, possess demonstrable cognitive capacities, and some are capable of cognitive feats matching those of apes. Since mammalian cortex is laminar while the avian telencephalon is nucleated, it is natural to ask whether the brains of these two cognitively capable taxa, despite their apparent anatomical dissimilarities, might exhibit common principles of organization on some level. Complementing recent investigations of macro-scale brain connectivity in mammals, including humans and macaques, we here present the first large-scale "wiring diagram" for the forebrain of a bird.

View Article and Find Full Text PDF

Groups of neurons firing synchronously are hypothesized to underlie many cognitive functions such as attention, associative learning, memory, and sensory selection. Recent theories suggest that transient periods of synchronization and desynchronization provide a mechanism for dynamically integrating and forming coalitions of functionally related neural areas, and that at these times conditions are optimal for information transfer. Oscillating neural populations display a great amount of spectral complexity, with several rhythms temporally coexisting in different structures and interacting with each other.

View Article and Find Full Text PDF

Modular networks of delay-coupled and pulse-coupled oscillators are presented, which display both transient (metastable) synchronization dynamics and the formation of a large number of "chimera" states characterized by coexistent synchronized and desynchronized subsystems. We consider networks based on both community and small-world topologies. It is shown through simulation that the metastable behaviour of the system is dependent in all cases on connection delay, and a critical region is found that maximizes indices of both metastability and the prevalence of chimera states.

View Article and Find Full Text PDF

This paper presents a toolbox of solutions that enable the user to construct biologically-inspired spiking neural networks with tens of thousands of neurons and millions of connections that can be simulated in real time, visualized in 3D and connected to robots and other devices. NeMo is a high performance simulator that works with a variety of neural and oscillator models and performs parallel simulations on either GPUs or multi-core processors. SpikeStream is a visualization and analysis environment that works with NeMo and can construct networks, store them in a database and visualize their activity in 3D.

View Article and Find Full Text PDF

This paper addresses the question of how the brain of an animal achieves cognitive integration--that is to say how it manages to bring its fullest resources to bear on an ongoing situation. To fully exploit its cognitive resources, whether inherited or acquired through experience, it must be possible for unanticipated coalitions of brain processes to form. This facilitates the novel recombination of the elements of an existing behavioural repertoire, and thereby enables innovation.

View Article and Find Full Text PDF

A network measure called knotty-centrality is defined that quantifies the extent to which a given subset of a graph's nodes constitutes a densely intra-connected topologically central connective core. Using this measure, the knotty centre of a network is defined as a sub-graph with maximal knotty-centrality. A heuristic algorithm for finding subsets of a network with high knotty-centrality is presented, and this is applied to previously published brain structural connectivity data for the cat and the human, as well as to a number of other networks.

View Article and Find Full Text PDF

The role of gamma frequency oscillation in neuronal interaction, and the relationship between oscillation and information transfer between neurons, has been the focus of much recent research. While the biological mechanisms responsible for gamma oscillation and the properties of resulting networks are well studied, the dynamics of changing phase coherence between oscillating neuronal populations are not well understood. To this end we develop a computational model of competitive selection between multiple stimuli, where the selection and transfer of population-encoded information arises from competition between converging stimuli to entrain a target population of neurons.

View Article and Find Full Text PDF

Abstract The neuroscience carried out by Lamme and colleagues is fascinating and important. But his case for localised phenomenology rests on a flawed understanding of rival theories and a misguided view of introspective report.

View Article and Find Full Text PDF

This paper presents a model of long-range cortical communication by means of a global neuronal workspace similar to that proposed by Dehaene and Naccache (2001). The model resembles that of Shanahan (2008), which was based on reverberating circuits of one-to-one connections, but uses a stochastic wiring regime in place of the highly regular scheme used there. The paper offers a systematic analysis of the influence of certain parameters on the dynamics of networks built according to this regime.

View Article and Find Full Text PDF