Publications by authors named "Murray Clarke"

Inappropriate immune activity is key in the pathogenesis of multiple diseases, and it is typically driven by excess inflammation and/or autoimmunity. IL-1 is often the effector owing to its powerful role in both innate and adaptive immunity, and, thus, it is tightly controlled at multiple levels. IL-1R2 antagonizes IL-1, but effects of losing this regulation are unknown.

View Article and Find Full Text PDF

Background And Aims: Atherosclerosis and other cardiovascular diseases (CVD) are well established to be both instigated and worsened by inflammation. Indeed, CANTOS formally proved that targeting the inflammatory cytokine IL-1β only could reduce both cardiovascular events and death. However, due to the central role of IL-1β in host defence, blockade increased fatal infections, suggesting targeting key immune mediators over the long natural history of CVD is unsuitable.

View Article and Find Full Text PDF

Background: Complex regional pain syndrome type 1 (CRPS-1) is a rare, disabling and sometimes chronic disorder usually arising after a trauma. This exploratory study examined whether patients with chronic CRPS-1 have a different genetic profile compared with those who do not have the condition.

Methods: Exome sequencing was performed to seek altered non-synonymous SNP allele frequencies in a discovery cohort of well-characterised patients with chronic CRPS-1 (n34) compared with population databases.

View Article and Find Full Text PDF

Unabated activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome is linked with the pathogenesis of various inflammatory disorders. Polo-like kinase 1 (PLK1) has been widely studied for its role in mitosis. Here, using both pharmacological and genetic approaches, we demonstrate that PLK1 promoted NLRP3 inflammasome activation at cell interphase.

View Article and Find Full Text PDF

Aims: Atherosclerosis is driven by multiple processes across multiple body systems. For example, the innate immune system drives both atherogenesis and plaque rupture via inflammation, while coronary artery-occluding thrombi formed by the coagulation system cause myocardial infarction and death. However, the interplay between these systems during atherogenesis is understudied.

View Article and Find Full Text PDF

Interleukin-1 alpha (IL-1α) is a powerful cytokine that drives inflammation and modulates adaptive immunity. Due to these powerful effects, IL-1α is controlled at multiple levels from transcription to cleavage and release from the cell. Genome-wide association studies can identify loci that drive important diseases, although often the functional effect of the variant on phenotype remains unknown or small, with most risk variants in non-coding regions.

View Article and Find Full Text PDF

Cytokines activate or inhibit immune cell behavior and are thus integral to all immune responses. IL-1α and IL-1β are powerful apical cytokines that instigate multiple downstream processes to affect both innate and adaptive immunity. Multiple studies show that IL-1β is typically activated in macrophages after inflammasome sensing of infection or danger, leading to caspase-1 processing of IL-1β and its release.

View Article and Find Full Text PDF

Vascular smooth muscle cells (VSMCs) are the main structural cell of blood vessels, and VSMC apoptosis occurs in vascular disease, after injury, and in vessel remodeling during development. Although VSMC apoptosis is viewed as silent, recent studies show that apoptotic cells can promote apoptosis-induced compensatory proliferation (AICP), apoptosis-induced apoptosis (AIA), and migration of both local somatic and infiltrating inflammatory cells. However, the effects of VSMC apoptosis on adjacent VSMCs, and their underlying signaling and mechanisms are unknown.

View Article and Find Full Text PDF

IL-1 is a powerful cytokine that drives inflammation and modulates adaptive immunity. Both IL-1α and IL-1β are translated as proforms that require cleavage for full cytokine activity and release, while IL-1α is reported to occur as an alternative plasma membrane-associated form on many cell types. However, the existence of cell surface IL-1α (csIL-1α) is contested, how IL-1α tethers to the membrane is unknown, and signaling pathways controlling trafficking are not specified.

View Article and Find Full Text PDF

Autophagy is an important cellular degradation pathway with a central role in metabolism as well as basic quality control, two processes inextricably linked to ageing. A decrease in autophagy is associated with increasing age, yet it is unknown if this is causal in the ageing process, and whether autophagy restoration can counteract these ageing effects. Here we demonstrate that systemic autophagy inhibition induces the premature acquisition of age-associated phenotypes and pathologies in mammals.

View Article and Find Full Text PDF

Platelets regulate hemostasis and are the key determinants of pathogenic thrombosis following atherosclerotic plaque rupture. Platelets circulate in an inactive state, but become activated in response to damage to the endothelium, which exposes thrombogenic material such as collagen to the blood flow. Activation results in a number of responses, including secretion of soluble bioactive molecules via the release of alpha and dense granules, activation of membrane adhesion receptors, release of microparticles, and externalization of phosphatidylserine.

View Article and Find Full Text PDF

Vascular smooth muscle cells (VSMCs) are a major cell type present at all stages of an atherosclerotic plaque. According to the 'response to injury' and 'vulnerable plaque' hypotheses, contractile VSMCs recruited from the media undergo phenotypic conversion to proliferative synthetic cells that generate extracellular matrix to form the fibrous cap and hence stabilize plaques. However, lineage-tracing studies have highlighted flaws in the interpretation of former studies, revealing that these studies had underestimated both the content and functions of VSMCs in plaques and have thus challenged our view on the role of VSMCs in atherosclerosis.

View Article and Find Full Text PDF

Pyroptotic cell death during endotoxemia causes death via unknown mechanisms. In this issue of Immunity, Wu et al. (2019) show that T3SS rod proteins or LPS induces inflammasome activation, macrophage pyroptosis, and accompanying tissue factor release, directly connecting inflammation to coagulation.

View Article and Find Full Text PDF

Ancient organisms have a combined coagulation and immune system, and although links between inflammation and hemostasis exist in mammals, they are indirect and slower to act. Here we investigated direct links between mammalian immune and coagulation systems by examining cytokine proproteins for potential thrombin protease consensus sites. We found that interleukin (IL)-1α is directly activated by thrombin.

View Article and Find Full Text PDF

Interleukin-1 alpha (IL-1α) is a powerful cytokine that modulates immunity, and requires canonical cleavage by calpain for full activity. Mature IL-1α is produced after inflammasome activation and during cell senescence, but the protease cleaving IL-1α in these contexts is unknown. We show IL-1α is activated by caspase-5 or caspase-11 cleavage at a conserved site.

View Article and Find Full Text PDF

Background: Although vascular smooth muscle cell (VSMC) proliferation is implicated in atherogenesis, VSMCs in advanced plaques and cultured from plaques show evidence of VSMC senescence and DNA damage. In particular, plaque VSMCs show shortening of telomeres, which can directly induce senescence. Senescence can have multiple effects on plaque development and morphology; however, the consequences of VSMC senescence or the mechanisms underlying VSMC senescence in atherosclerosis are mostly unknown.

View Article and Find Full Text PDF

Inflammation is a key instigator of the immune responses that drive atherosclerosis and allograft rejection. IL-1α, a powerful cytokine that activates both innate and adaptive immunity, induces vessel inflammation after release from necrotic vascular smooth muscle cells (VSMCs). Similarly, IL-1α released from endothelial cells (ECs) damaged during transplant drives allograft rejection.

View Article and Find Full Text PDF

Objective: Vascular smooth muscle cells (VSMCs) that become senescent are both present within atherosclerotic plaques and thought to be important to the disease process. However, senescent VSMCs are generally considered to only contribute through inaction, with failure to proliferate resulting in VSMC- and collagen-poor unstable fibrous caps. Whether senescent VSMCs can actively contribute to atherogenic processes, such as inflammation, is unknown.

View Article and Find Full Text PDF

Aims: The chemokine receptor CCR5 and its inflammatory ligands have been linked to atherosclerosis, an accelerated form of which occurs in saphenous vein graft disease. We investigated the function of vascular smooth muscle CCR5 in human coronary artery and saphenous vein, vascular tissues susceptible to atherosclerosis, and vasospasm.

Methods And Results: CCR5 ligands were vasoconstrictors in saphenous vein and coronary artery.

View Article and Find Full Text PDF

Background: Mitochondrial DNA (mtDNA) damage occurs in both circulating cells and the vessel wall in human atherosclerosis. However, it is unclear whether mtDNA damage directly promotes atherogenesis or is a consequence of tissue damage, which cell types are involved, and whether its effects are mediated only through reactive oxygen species.

Methods And Results: mtDNA damage occurred early in the vessel wall in apolipoprotein E-null (ApoE(-/-)) mice, before significant atherosclerosis developed.

View Article and Find Full Text PDF