Urban gardeners contribute to sustainable cities and often take great care to limit exposure to soil contaminants like lead (Pb). Although best management practices (BMPs) like mulching to reduce soil splash can limit crop contamination, they may not eliminate all contamination for leafy greens, which trap soil particles. How effective is washing at removing Pb contamination from leafy greens when using BMPs? Are certain washing techniques more effective than others? We present results from two experiments addressing these questions.
View Article and Find Full Text PDFUrban community gardeners employ a range of best practices that limit crop contamination by toxicants like lead (Pb). While Pb root uptake is generally low, the relative significance of various Pb deposition processes and the effectiveness of best practices in reducing these processes have not been sufficiently characterized. This study compared leafy lettuce (Lactuca sativa) grown in high Pb (1150 mg/kg) and low Pb (90 mg/kg) soils, under three different soil cover conditions: 1) bare soil, 2) mulch cover to limit splash, and 3) mulch cover under hoophouses to limit splash and air deposition, in a New York City (NYC) community garden and a rural site in Ithaca, New York (NY).
View Article and Find Full Text PDFEnviron Sci Process Impacts
February 2021
Hydroxypyromorphite (HPM) is a low-solubility Pb phosphate mineral that has the potential to limit solubility and bioavailability of Pb in soils and water. Because of reported uncertainty regarding the solubility product of this important mineral, we re-evaluated the solubility of Pb and activity of the free Pb2+ ion in aqueous suspensions of microcrystalline HPM equilibrated up to 30 days over a wide range of added soluble phosphate. A small addition of phosphate (0.
View Article and Find Full Text PDFHeavy metals in agricultural soils exist in diverse dissolved (free cations and complexed species of positive, neutral, or negative charges), particulate (sorbed, structural, and coprecipitated), and colloidal (micro- and nanometer-sized particles) species. The fate of different heavy metal species is controlled by the master variables: pH (solubility), ionic strength (activity and charge-shielding), and dissolved organic carbon (complexation). In the rhizosphere, chemical speciation controls toxicokinetics (uptake and transport of metals by plants) while toxicodynamics (interaction between the plant and absorbed species) drives the toxicity outcome.
View Article and Find Full Text PDFConsumption of rice is a major pathway of cadmium (Cd) exposure to humans with Cd bioavailability from rice being an important determinant of the potential health risk. We conducted both in vitro bioaccessibility (using four methods) and in vivo bioavailability (using a mouse model) of Cd from six rices. The relative bioavailability (RBA) for Cd ranged from 15 to 56%, 18 to 56% and 3.
View Article and Find Full Text PDFEnviron Sci Technol
December 2019
Low-molecular-weight organic acids such as oxalate, which are ubiquitous in the environment, can control the solubility and bioavailability of toxic metals such as Pb in soils and water by influencing complexation and precipitation reactions. Here, we investigated Pb solubility in relation to Pb-oxalate precipitation at pH 5.0 in the absence and presence of calcium (Ca), a common cation in environmental matrices.
View Article and Find Full Text PDFCadmium (Cd) contamination in paddy soils poses food security risks and public health concerns. Exploring effective strategies to reduce rice grain Cd is an urgent need. In this study, field plot experiments were conducted to evaluate the effects of wollastonite application with or without phosphate (P) addition on Cd accumulation in rice (Oryza sativa L.
View Article and Find Full Text PDFInt J Phytoremediation
October 2019
Hydroponic, greenhouse and field experiments were conducted to explore the potential of pokeweed ( L. to accumulate Zn and Cd from nutrient solutions and contaminated soils. The hydroponic results confirmed that this native species is a strong Zn and Cd bioaccumulator that does not experience severe phytotoxicity until quite high root and shoot concentrations, approaching 4000 and 1600 mg kg of Zn, and 1500 and 500 mg kg of Cd, respectively.
View Article and Find Full Text PDFHere we study the precipitation of lead (Pb)-phosphate minerals over the pH range of 4.0 to 8.0 with and without oxalate, a ubiquitous and abundant low-molecular-weight organic acid derived from plants and microorganisms in environmental matrices.
View Article and Find Full Text PDFThe removal efficiency of the pesticide chlorpyrifos (50 and 500 μg L) by five wetland plant species (Cyperus alternifolius, Canna indica, Iris pseudacorus, Juncus effusus and Typha orientalis) was studied in recirculating vertical flow constructed wetland systems (RVFCWs). Results reveal that for chlorpyrifos at different concentrations, good removal efficiencies (94-98%) were observed using the same plant systems, while no significant differences in removal efficiencies were seen between the different plant systems. In addition, the chlorpyrifos removal efficiency of the planted systems increased significantly compared with the unplanted controls.
View Article and Find Full Text PDFA pot experiment and a leaching experiment were conducted to investigate the effects of earthworms and pig manure on heavy metals (Cd, Pb, and Zn) immobility, in vitro bioaccessibility and leachability under simulated acid rain (SAR). Results showed manure significantly increased soil organic carbon (SOC), dissolved organic carbon (DOC), available phosphorus (AP), total N, total P and pH, and decreased CaCl-extractable metals and total heavy metals in water and SAR leachate. The addition of earthworms significantly increased AP (from 0.
View Article and Find Full Text PDFEnviron Toxicol Chem
July 2018
To assess the impact of Ni toxicity in soils after long-term field aging, a coarse-textured soil was spiked with Ni salt at 100, 200, and 400 mg kg Ni concentrations. These soils were aged in the field along with an unspiked (control) soil under natural conditions for 12 yr, after which total soil Ni was measured and tests of Ni extractability by 0.01 M CaCl and diethylenetriaminepentaacetic acid (DTPA) were done.
View Article and Find Full Text PDFTo assess the importance of variation among arugula (Eruca vesicaria subsp. sativa) cultivars in the ability to accumulate arsenic (As) in above-ground tissues, uptake of As by 16 cultivars was measured in the field and in hydroponic culture. In the field trial on soil contaminated by past pesticide use, As soil-plant uptake coefficients varied by a factor of 2.
View Article and Find Full Text PDFCarbon isotope analysis and 454 pyrosequencing methods were used to investigate in situ biodegradation of chlorpyrifos during its transport through three model integrated recirculating constructed wetlands (IRCWs). Results show that plant and Fe-impregnated biochar promoted degradation of chlorpyrifos and its metabolite 3,5,6-trichloro-2-pyridinol (TCP). Carbon isotope ratios in the IRCWs shifted to -31.
View Article and Find Full Text PDFSoils historically contaminated in urban and orchard environments by Pb and As were amended separately with organic matter, soluble Ca phosphate, and Fe oxide to determine whether these materials could lower Pb or As bioaccessibility. After 5 years of equilibration in the laboratory, the amended soils and control were tested for bioaccessibility using the standard physiologically based extraction test (PBET). Bioaccessibilities of Pb and As were not substantially reduced relative to the unamended controls after the 5-year period by any of the soil amendments.
View Article and Find Full Text PDFCalcium-oxalates (Ca-Ox), which are widely produced by microorganisms and plants, are ubiquitous and persistent biominerals in the biosphere. We investigated the potential trapping of two phytotoxic metals, cadmium (Cd) and zinc (Zn) by isomorphous substitution into the crystalline structure of Ca-Ox precipitated over a wide range of Cd/Ca or Zn/Ca ratio in solution. We employed atomic absorption spectroscopy, X-ray diffraction (XRD), and optical microscopy to evaluate our hypotheses that favorable solid-solution conditions and structural framework of crystal habits promote selective metal trapping within Ca-Ox precipitates.
View Article and Find Full Text PDFEnviron Monit Assess
April 2016
Toxic heavy metals persist in agricultural soils and ecosystem for many decades after their application as contaminants in sewage sludge and fertilizer products This study assessed the potential long-term risk of cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) in land-applied sewage sludge to food crop contamination. A sewage sludge-amended soil (SAS) aged in the field more than 35 years was used in a greenhouse pot experiment with leafy vegetables (lettuce and amaranth) having strong Cd and Zn accumulation tendencies. Soil media with variable levels of available Cd, Zn, and Cu (measured using 0.
View Article and Find Full Text PDFThe potential for lead (Pb) and arsenic (As) transfer into vegetables was studied on old orchard land contaminated by lead arsenate pesticides. Root (carrot), leafy (lettuce), and vegetable fruits (green bean, tomato) were grown on seven "miniplots" with soil concentrations ranging from near background to ≈ 800 and ≈ 200 mg kg of total Pb and As, respectively. Each miniplot was divided into sub-plots and amended with 0% (control), 5% and 10% (by weight) compost and cropped for 3 years.
View Article and Find Full Text PDFEnviron Pollut
January 2016
Exposure of young children to toxic metals in urban environments is largely due to soil and dust ingestion. Soil particle size distribution and concentrations of toxic metals in different particle sizes are important risk factors in addition to bioaccessibility of these metals in the particles. Analysis of particle size distribution and metals concentrations for 13 soils, 12 sampled from urban gardens and 1 from orchard found that fine particles (<105 μm) comprised from 22 to 66% by weight of the tested soils, with Ba, Cu, Pb and Zn generally at higher concentrations in the finer particles.
View Article and Find Full Text PDFArugula (Eruca sativa) and collards (Brassica oleracea var. acephala), were grown at a former orchard where soils had been variably contaminated by lead arsenate pesticides. To test for the effect of compost on As and Pb transfer into plants, compost was added (0, 5, and 10% DW) to five plots representing a wide range of soil Pb and As.
View Article and Find Full Text PDFPaired vegetable/soil samples from New York City and Buffalo, NY, gardens were analyzed for lead (Pb), cadmium (Cd) and barium (Ba). Vegetable aluminum (Al) was measured to assess soil adherence. Soil and vegetable metal concentrations did not correlate; vegetable concentrations varied by crop type.
View Article and Find Full Text PDFThe effects of several silicates (talcum powder (TP), calcium silicate (CS), sodium silicate (SS), and potassium silicate (PS)), in comparison with other amendments (quicklime (QL) and potassium dihydrogen phosphate (PDP)) on cadmium (Cd) uptake by three dicotyledonous crops (Amaranthus hypochondriacus L. Cv. 'K112', Amaranthus tricolor L.
View Article and Find Full Text PDFThe objective of this study was to investigate the levels of Cd, Pb, Cu and Zn in the environment and several important food sources grown and consumed in the vicinity of Dabaoshan mine in Southern China, and evaluate potential health risks among local residents. The Cd, Pb, Cu and Zn concentrations of arable soils and well water near the mines exceeded the quality standard values. The concentrations of Cd and Pb in some food crops (rice grain, vegetable and soybean) samples were significantly higher than the maximum permissible level.
View Article and Find Full Text PDFUrban gardens provide affordable fresh produce to communities with limited access to healthy food but may also increase exposure to lead (Pb) and other soil contaminants. Metals analysis of 564 soil samples from 54 New York City (NYC) community gardens found at least one sample exceeding health-based guidance values in 70% of gardens. However, most samples (78%) did not exceed guidance values, and medians were generally below those reported in NYC soil and other urban gardening studies.
View Article and Find Full Text PDFIn the present study, we evaluated a commonly employed modified Bureau Communautaire de Référence (BCR test) 3-step sequential extraction procedure for its ability to distinguish forms of solid-phase Pb in soils with different sources and histories of contamination. When the modified BCR test was applied to mineral soils spiked with three forms of Pb (pyromorphite, hydrocerussite and nitrate salt), the added Pb was highly susceptible to dissolution in the operationally-defined "reducible" or "oxide" fraction regardless of form. When three different materials (mineral soil, organic soil and goethite) were spiked with soluble Pb nitrate, the BCR sequential extraction profiles revealed that soil organic matter was capable of retaining Pb in more stable and acid-resistant forms than silicate clay minerals or goethite.
View Article and Find Full Text PDF