Publications by authors named "Murphy Brasuel"

seedcake oils from 30 different locations in south central Kenya were analyzed for their fatty acid composition using ATR-FTIR to determine the efficacy of a simple procedure for measuring initial geographic and subsequent temporal variation during five months of seed storage. To our knowledge, this is the first report showing variation in how oils in untreated nuts from different locations change during storage, and how these differences are correlated with local environments. These variations are important to forensic authentication efforts and they provide insights into ways to optimize Croton oil composition.

View Article and Find Full Text PDF

As nanomaterials are harnessed for medicine and other technological advances, an understanding of the toxicology of these new materials is required to inform our use. This toxicological knowledge will be required to establish the medical and environmental regulations required to protect consumers and those involved in nanomaterial manufacturing. Nanoparticles of titanium oxide, carbon nanotubes, semiconductor quantum dots, gold, and silver represent a high percentage of the nanotechnology currently available or currently poised to reach consumers.

View Article and Find Full Text PDF

This review discusses the development and recent advances of probes encapsulated by biologically localized embedding (PEBBLEs), and in particular the application of PEBBLEs as ion sensors. PEBBLEs allow for minimally intrusive sensing of ions in cellular environments due to their small size (20 to 600nm in diameter) and protect the sensing elements (i.e.

View Article and Find Full Text PDF

Nanosized photonic explorers for bioanalysis with biologically localized embedding (PEBBLEs) have been created for the intracellular monitoring of small analytes (e.g. H(+), Ca(2+), Mg(2+), Zn(2+), O(2), K(+), Na(+), Cl(-), OH and glucose).

View Article and Find Full Text PDF

Optical PEBBLE (probes encapsulated by biologically localized embedding) nanosensors have been developed for dissolved oxygen using organically modified silicate (ormosil) nanoparticles as a matrix. The ormosil nanoparticles are prepared via a sol-gel-based process, which includes the formation of core particles with phenyltrimethoxysilane as a precursor followed by the formation of a coating layer with methyltrimethoxysilane as a precursor. The average diameter of the resultant particles is 120 nm.

View Article and Find Full Text PDF

The first nanometer scale anion sensing fluorescent spherical nanosensors, or PEBBLEs (probes encapsulated by biologically localized embedding) have been developed for the intracellular monitoring of chloride. The general scheme for the polymerization and introduction of sensing components creates a matrix that allows for the utilization of the highly selective ionophores used in poly(vinyl chloride) and poly(decyl methacrylate) ion-selective electrodes. We have demonstrated that our previously developed scheme for cation sensors can be utilized to tailoring selective submicron sensors for use in intracellular measurements of biologically relevant anions for which selective enough fluorescent probes do not exist.

View Article and Find Full Text PDF

This paper presents the development and characterization of a highly selective magnesium fluorescent optical nanosensor, made possible by PEBBLE (probe encapsulated by biologically localized embedding) technology. A ratiometric sensor has been developed by co-immobilizing a dye that is sensitive to and highly selective for magnesium, with a reference dye in a matrix. The sensors are prepared via a microemulsion polymerization process, which entraps the sensing components inside a polymer matrix.

View Article and Find Full Text PDF