In the methylerythritol phosphate pathway for isoprenoid biosynthesis, the GcpE/IspG enzyme catalyzes the conversion of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate into (E)-4-hydroxy-3-methylbut-2-enyl diphosphate. This reaction requires a double one-electron transfer involving a [4Fe-4S] cluster. A thylakoid preparation from spinach chloroplasts was capable in the presence of light to act as sole electron donor for the plant GcpE Arabidopsis thaliana in the absence of any pyridine nucleotide.
View Article and Find Full Text PDFThe mevalonate-independent methylerythritol phosphate pathway is widespread in bacteria. It is also present in the chloroplasts of all phototrophic organisms. Whereas the first steps, are rather well known, GcpE and LytB, the enzymes catalyzing the last two steps have been much less investigated.
View Article and Find Full Text PDFThe last enzyme (LytB) of the methylerythritol phosphate pathway for isoprenoid biosynthesis catalyzes the reduction of (E)-4-hydroxy-3-methylbut-2-enyl diphosphate into isopentenyl diphosphate and dimethylallyl diphosphate. This enzyme possesses a dioxygen-sensitive [4Fe-4S] cluster. This prosthetic group was characterized in the Escherichia coli enzyme by UV/visible and electron paramagnetic resonance spectroscopy after reconstitution of the purified protein.
View Article and Find Full Text PDF