The development of visible light-active photocatalysts is essential for increasing the conversion efficiency of solar energy into hydrogen (H). Here, we present a facile method for nitrogen doping of monolithic titanium dioxide (TiO) nanoparticle-based aerogels to activate them for visible light. Plasma-enhanced chemical vapor deposition at low temperature enables efficient incorporation of nitrogen into preformed TiO aerogels without compromising their advantageous intrinsic characteristics such as large surface area, extensive porosity, and nanoscale properties of the semiconducting building blocks.
View Article and Find Full Text PDFMonolithic aerogels composed of crystalline nanoparticles enable photocatalysis in three dimensions, but they suffer from low mechanical stability and it is difficult to produce them with complex geometries. Here, an approach to control the geometry of the photocatalysts to optimize their photocatalytic performance by introducing carefully designed 3D printed polymeric scaffolds into the aerogel monoliths is reported. This allows to systematically study and improve fundamental parameters in gas phase photocatalysis, such as the gas flow through and the ultraviolet light penetration into the aerogel and to customize its geometric shape to a continuous gas flow reactor.
View Article and Find Full Text PDFIn this paper, inorganic silica microspheres with interconnected macroporosity are tested as a platform for designing robust and efficient photocatalytic systems for a continuous flow reactor, enabling a low cost and straightforward purification of wastewater through solar-driven photocatalysis. The photocatalytically active microspheres are prepared by wet impregnation of porous silica scaffolds with Trizma-functionalized anatase titania (TiO) nanoparticles (NPs). NPs loading of 22 wt% is obtained in the form of a thin and well-attached layer, covering the external surface of the microspheres as well as the internal surface of the pores.
View Article and Find Full Text PDFWe report a solution-phase approach to the synthesis of crystalline copper nanowires (Cu NWs) with an aspect ratio >1000 via a new catalytic mechanism comprising copper ions. The synthesis involves the reaction between copper(II) chloride and copper(II) acetylacetonate in a mixture of oleylamine and octadecene. Reaction parameters such as the molar ratio of precursors as well as the volume ratio of solvents offer the possibility to tune the morphology of the final product.
View Article and Find Full Text PDFChemical design criteria for materials for bioelectronics applications using a series of copolymer derivatives based on poly(3-hexylthiophene) are established. Directed chemical design via side-chain functionalization with polar groups allows manipulation of ion transport and ion-to-electron transduction. Insights gained will permit increased use of the plethora of materials employed in the organic electronics area for application in the bioelectronics field.
View Article and Find Full Text PDF