Background: Both classes of transposable elements (DNA and RNA) are tightly regulated at the transcriptional level leading to the inactivation of transposition via epigenetic mechanisms. Due to the high copies number of these elements, the hypothesis has emerged that their regulation can coordinate a regulatory network of genes. Herein, we investigated whether transposition regulation of HsMar1, a human DNA transposon, differs in presence or absence of endogenous HsMar1 copies.
View Article and Find Full Text PDFBackground: Mariner elements represent the most successful family of autonomous DNA transposons, being present in various plant and animal genomes, including humans. The introduction and co-evolution of mariners within host genomes imply a strict regulation of the transposon activity. Biochemical data accumulated during the past decade have led to a convergent picture of the transposition cycle of mariner elements, suggesting that mariner transposition does not rely on host-specific factors.
View Article and Find Full Text PDF